Artificial intelligence for the detection of sacroiliitis on magnetic resonance imaging in patients with axial spondyloarthritis

被引:9
|
作者
Lee, Seulkee [1 ]
Jeon, Uju [2 ]
Lee, Ji Hyun [3 ]
Kang, Seonyoung [1 ]
Kim, Hyungjin [1 ]
Lee, Jaejoon [1 ]
Chung, Myung Jin [2 ,4 ]
Cha, Hoon-Suk [1 ]
机构
[1] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Med, Seoul, South Korea
[2] Samsung Med Ctr, Med AI Res Ctr, Seoul, South Korea
[3] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Radiol, Seoul, South Korea
[4] Sungkyunkwan Univ, Sch Med, Dept Data Convergence & Future Med, Seoul, South Korea
来源
FRONTIERS IN IMMUNOLOGY | 2023年 / 14卷
基金
新加坡国家研究基金会;
关键词
axial spondyloarthritis; MRI; artificial intelligence; machine learning; sacroiliitis; ANKYLOSING-SPONDYLITIS; RADIOGRAPHS; DIAGNOSIS; MRI;
D O I
10.3389/fimmu.2023.1278247
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
BackgroundMagnetic resonance imaging (MRI) is important for the early detection of axial spondyloarthritis (axSpA). We developed an artificial intelligence (AI) model for detecting sacroiliitis in patients with axSpA using MRI.MethodsThis study included MRI examinations of patients who underwent semi-coronal MRI scans of the sacroiliac joints owing to chronic back pain with short tau inversion recovery (STIR) sequences between January 2010 and December 2021. Sacroiliitis was defined as a positive MRI finding according to the ASAS classification criteria for axSpA. We developed a two-stage framework. First, the Faster R-CNN network extracted regions of interest (ROIs) to localize the sacroiliac joints. Maximum intensity projection (MIP) of three consecutive slices was used to mimic the reading of two adjacent slices. Second, the VGG-19 network determined the presence of sacroiliitis in localized ROIs. We augmented the positive dataset six-fold. The sacroiliitis classification performance was measured using the sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC). The prediction models were evaluated using three-round three-fold cross-validation.ResultsA total of 296 participants with 4,746 MRI slices were included in the study. Sacroiliitis was identified in 864 MRI slices of 119 participants. The mean sensitivity, specificity, and AUROC for the detection of sacroiliitis were 0.725 (95% CI, 0.705-0.745), 0.936 (95% CI, 0.924-0.947), and 0.830 (95%CI, 0.792-0.868), respectively, at the image level and 0.947 (95% CI, 0.912-0.982), 0.691 (95% CI, 0.603-0.779), and 0.816 (95% CI, 0.776-0.856), respectively, at the patient level. In the original model, without using MIP and dataset augmentation, the mean sensitivity, specificity, and AUROC were 0.517 (95% CI, 0.493-0.780), 0.944 (95% CI, 0.933-0.955), and 0.731 (95% CI, 0.681-0.780), respectively, at the image level and 0.806 (95% CI, 0.729-0.883), 0.617 (95% CI, 0.523-0.711), and 0.711 (95% CI, 0.660-0.763), respectively, at the patient level. The performance was improved by MIP techniques and data augmentation.ConclusionAn AI model was developed for the detection of sacroiliitis using MRI, compatible with the ASAS criteria for axSpA, with the potential to aid MRI application in a wider clinical setting.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Artificial Intelligence for the Detection of Sacroiliitis on Magnetic Resonance Imaging in Patients with Axial Spondyloarthritis
    Lee, Seulkee
    Jeon, Uju
    Lee, Ji Hyun
    Kang, Seonyoung
    Kim, Hyungjin
    Lee, Jaejoon
    Chung, Myung Jin
    Kim, Jinseok
    Koh, Eun-Mi
    Cha, Hoon-Suk
    ARTHRITIS & RHEUMATOLOGY, 2023, 75 : 3721 - 3723
  • [2] ARTIFICIAL INTELLIGENCE FOR DETECTION OF INFLAMMATORY SACROILIITIS IN MAGNETIC RESONANCE IMAGING IN PATIENTS WITH AXIAL SPONDYLOARTHRITIS
    Lee, J.
    Kang, S. Y.
    Lee, S.
    Kim, H.
    Koh, E. M.
    Cha, H. S.
    ANNALS OF THE RHEUMATIC DISEASES, 2023, 82 : 1728 - 1728
  • [3] NOT A REPLACEMENT BUT A POSSIBLE SUBSTITUTION: DETECTION OF SACROILIITIS ON MAGNETIC RESONANCE ENTEROGRAPHY IN PATIENTS WITH AXIAL SPONDYLOARTHRITIS
    Ergenc, I.
    Ergelen, R.
    Unal, A. U.
    Erturk, Z.
    Yalcinkaya, Y.
    Inanc, N.
    Imeryuz, N.
    Direskeneli, H.
    Ekinci, G.
    Atagunduz, P.
    ANNALS OF THE RHEUMATIC DISEASES, 2017, 76 : 1013 - 1014
  • [4] Deep learning algorithms for magnetic resonance imaging of inflammatory sacroiliitis in axial spondyloarthritis
    Lin, Karina Ying Ying
    Peng, Cao
    Lee, Kam Ho
    Chan, Shirley Chiu Wai
    Chung, Ho Yin
    RHEUMATOLOGY, 2022, 61 (10) : 4198 - 4206
  • [5] Impact of replacing radiographic sacroiliitis by magnetic resonance imaging structural lesions on the classification of patients with axial spondyloarthritis
    Bakker, Pauline A.
    van den Berg, Rosaline
    de Hooge, Manouk
    van Lunteren, Miranda
    Ez-Zaitouni, Zineb
    Fagerli, Karen M.
    Landewe, Robert
    van Oosterhout, Maikel
    Ramonda, Roberta
    Reijnierse, Monique
    van Gaalen, Floris A.
    van der Heijde, Desiree
    RHEUMATOLOGY, 2018, 57 (07) : 1186 - 1193
  • [6] Detection of radiographic sacroiliitis with an artificial neural network in patients with suspicion of axial spondyloarthritis
    Poddubnyy, Denis
    Proft, Fabian
    Hermann, Kay-Geert A.
    Spiller, Laura
    Niehues, Stefan M.
    Adams, Lisa C.
    Protopopov, Mikhail
    Rodriguez, Valeria Rios
    Muche, Burkhard
    Rademacher, Judith
    Torgutalp, Murat
    Bressem, Keno K.
    Vahldiek, Janis L.
    RHEUMATOLOGY, 2021, 60 (12) : 5868 - 5869
  • [7] Detection of Radiographic Sacroiliitis with an Artificial Neural Network in Patients with Suspicion of Axial Spondyloarthritis
    Poddubnyy, Denis
    Proft, Fabian
    Hermann, Kay-Geert
    Spiller, Laura
    Niehues, Stefan
    Adams, Lisa
    Protopopov, Mikhail
    Rodriguez, Valeria Rios
    Muche, Burkhard
    Rademacher, Judith
    Torgutalp, Murat
    Bressem, Keno
    Vahldiek, Janis
    ARTHRITIS & RHEUMATOLOGY, 2021, 73 : 4010 - 4012
  • [8] DEEP LEARNING ALGORITHMS FOR MAGNETIC RESONANCE IMAGING OF INFLAMMATORY SACROILIITIS IN AXIAL SPONDYLOARTHRITIS.
    Chung, H. Y.
    Chan, C. W. S.
    ANNALS OF THE RHEUMATIC DISEASES, 2022, 81 : 803 - 803
  • [9] Comment on: Deep learning algorithms for magnetic resonance imaging of inflammatory sacroiliitis in axial spondyloarthritis
    McMaster, Christopher
    Liew, David F. L.
    Liu, Bonnia
    Schachna, Lionel
    RHEUMATOLOGY, 2022, 61 (10) : E316 - E317
  • [10] THE INTENSITY OR DURATION OF INFLAMMATORY BACK PAIN HAS NO IMPACT ON THE DETECTION OF SACROILIITIS BY MAGNETIC RESONANCE IMAGING IN AXIAL SPONDYLOARTHRITIS
    Sevik, G.
    Biyikli, E.
    Bugdayci, O.
    Abacar, K.
    Agackiran, S. Kutlug
    Ozkaya, S. Colakoglu
    Ekinci, G.
    Atagunduz, P.
    ANNALS OF THE RHEUMATIC DISEASES, 2023, 82 : 2003 - 2004