Artificial intelligence for the detection of sacroiliitis on magnetic resonance imaging in patients with axial spondyloarthritis

被引:9
|
作者
Lee, Seulkee [1 ]
Jeon, Uju [2 ]
Lee, Ji Hyun [3 ]
Kang, Seonyoung [1 ]
Kim, Hyungjin [1 ]
Lee, Jaejoon [1 ]
Chung, Myung Jin [2 ,4 ]
Cha, Hoon-Suk [1 ]
机构
[1] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Med, Seoul, South Korea
[2] Samsung Med Ctr, Med AI Res Ctr, Seoul, South Korea
[3] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Radiol, Seoul, South Korea
[4] Sungkyunkwan Univ, Sch Med, Dept Data Convergence & Future Med, Seoul, South Korea
来源
FRONTIERS IN IMMUNOLOGY | 2023年 / 14卷
基金
新加坡国家研究基金会;
关键词
axial spondyloarthritis; MRI; artificial intelligence; machine learning; sacroiliitis; ANKYLOSING-SPONDYLITIS; RADIOGRAPHS; DIAGNOSIS; MRI;
D O I
10.3389/fimmu.2023.1278247
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
BackgroundMagnetic resonance imaging (MRI) is important for the early detection of axial spondyloarthritis (axSpA). We developed an artificial intelligence (AI) model for detecting sacroiliitis in patients with axSpA using MRI.MethodsThis study included MRI examinations of patients who underwent semi-coronal MRI scans of the sacroiliac joints owing to chronic back pain with short tau inversion recovery (STIR) sequences between January 2010 and December 2021. Sacroiliitis was defined as a positive MRI finding according to the ASAS classification criteria for axSpA. We developed a two-stage framework. First, the Faster R-CNN network extracted regions of interest (ROIs) to localize the sacroiliac joints. Maximum intensity projection (MIP) of three consecutive slices was used to mimic the reading of two adjacent slices. Second, the VGG-19 network determined the presence of sacroiliitis in localized ROIs. We augmented the positive dataset six-fold. The sacroiliitis classification performance was measured using the sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC). The prediction models were evaluated using three-round three-fold cross-validation.ResultsA total of 296 participants with 4,746 MRI slices were included in the study. Sacroiliitis was identified in 864 MRI slices of 119 participants. The mean sensitivity, specificity, and AUROC for the detection of sacroiliitis were 0.725 (95% CI, 0.705-0.745), 0.936 (95% CI, 0.924-0.947), and 0.830 (95%CI, 0.792-0.868), respectively, at the image level and 0.947 (95% CI, 0.912-0.982), 0.691 (95% CI, 0.603-0.779), and 0.816 (95% CI, 0.776-0.856), respectively, at the patient level. In the original model, without using MIP and dataset augmentation, the mean sensitivity, specificity, and AUROC were 0.517 (95% CI, 0.493-0.780), 0.944 (95% CI, 0.933-0.955), and 0.731 (95% CI, 0.681-0.780), respectively, at the image level and 0.806 (95% CI, 0.729-0.883), 0.617 (95% CI, 0.523-0.711), and 0.711 (95% CI, 0.660-0.763), respectively, at the patient level. The performance was improved by MIP techniques and data augmentation.ConclusionAn AI model was developed for the detection of sacroiliitis using MRI, compatible with the ASAS criteria for axSpA, with the potential to aid MRI application in a wider clinical setting.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] MAGNETIC-RESONANCE-IMAGING (MRI) IN THE DETECTION OF EARLY SACROILIITIS
    HANLY, JG
    MITCHELL, M
    MACMILLAN, L
    BARNES, D
    MOSHER, D
    SUTTON, E
    THERIAULT, D
    GRANT, E
    DOCHERTY, P
    ARTHRITIS AND RHEUMATISM, 1992, 35 (09): : S243 - S243
  • [42] Artificial intelligence and machine learning in axial spondyloarthritis
    Adams, Lisa C.
    Bressem, Keno K.
    Poddubnyy, Denis
    CURRENT OPINION IN RHEUMATOLOGY, 2024, 36 (04) : 267 - 273
  • [43] DIFFUSION-WEIGHTED MAGNETIC RESONANCE IMAGING IN THE DETECTION OF SACROILIITIS
    Saad, N.
    Bradbury, L.
    McFarlane, J.
    Hollis, K.
    Brown, M.
    Robinson, P.
    INTERNAL MEDICINE JOURNAL, 2012, 42 : 18 - 18
  • [44] Development of a Deep Learning Algorithm for the Detection of Sacroiliitis on MRI in Patients with Active Axial Spondyloarthritis
    Nicolaes, Joeri
    Machado, Pedro
    Baraliakos, Xenofon
    Santosh, Mayank
    Carnell, Andrew
    de Peyrecave, Natasha
    Bennett, Alexander
    ARTHRITIS & RHEUMATOLOGY, 2021, 73 : 316 - 317
  • [45] Artificial Intelligence in Cardiovascular Magnetic Resonance Imaging
    Castellaccio, A.
    Arostegui, N. Almeida
    Jimenez, M. Palomo
    Tapia, D. Quinones
    Zurita, M. Bret
    Galvan, E. Vano
    RADIOLOGIA, 2025, 67 (02): : 239 - 247
  • [46] Reproducibility of Magnetic Resonance Imaging Diffusion Weighted Imaging in Axial Spondyloarthritis Patients and Healthy Subjects.
    Moller, Jakob M.
    Sorensen, Inge Juul
    Ostergaard, Mikkel
    Thomsen, Henrik
    Madsen, Ole Rintek
    Pedersen, Susanne Juhl
    ARTHRITIS & RHEUMATOLOGY, 2014, 66 : S523 - S523
  • [47] Artificial Intelligence and Cardiovascular Magnetic Resonance Imaging in Myocardial Infarction Patients
    Chong, Jun Hua
    Abdulkareem, Musa
    Petersen, Steffen E.
    Khanji, Mohammed Y.
    CURRENT PROBLEMS IN CARDIOLOGY, 2022, 47 (12)
  • [48] Challenges in interpreting sacroiliac magnetic resonance imaging for the diagnosis of axial spondyloarthritis
    El Ouali, Zakaria
    Gossec, Laure
    JOINT BONE SPINE, 2023, 90 (01)
  • [49] Interobserver Reliability of Magnetic Resonance Imaging of Sacroiliac Joints in Axial Spondyloarthritis
    Musetescu, Anca Emanuela
    Bobirca, Anca
    Gherghina, Florin Liviu
    Florescu, Alesandra
    Bobirca, Florin
    Ciurea, Paulina Lucia
    Criveanu, Cristina
    Musca, Alice
    Florescu, Lucian Mihai
    Gheonea, Ioana Andreea
    LIFE-BASEL, 2022, 12 (04):
  • [50] MAGNETIC RESONANCE IMAGING IN THE DIAGNOSIS OF AXIAL SPONDYLOARTHRITIS: A SYSTEMATIC LITERATURE REVIEW
    Bray, T. J.
    Jones, A.
    Mandl, P.
    Marco-Ortega, H.
    Hall-Craggs, M. A.
    Machado, P. M.
    ANNALS OF THE RHEUMATIC DISEASES, 2018, 77 : 1184 - 1185