Artificial intelligence for the detection of sacroiliitis on magnetic resonance imaging in patients with axial spondyloarthritis

被引:9
|
作者
Lee, Seulkee [1 ]
Jeon, Uju [2 ]
Lee, Ji Hyun [3 ]
Kang, Seonyoung [1 ]
Kim, Hyungjin [1 ]
Lee, Jaejoon [1 ]
Chung, Myung Jin [2 ,4 ]
Cha, Hoon-Suk [1 ]
机构
[1] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Med, Seoul, South Korea
[2] Samsung Med Ctr, Med AI Res Ctr, Seoul, South Korea
[3] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Radiol, Seoul, South Korea
[4] Sungkyunkwan Univ, Sch Med, Dept Data Convergence & Future Med, Seoul, South Korea
来源
FRONTIERS IN IMMUNOLOGY | 2023年 / 14卷
基金
新加坡国家研究基金会;
关键词
axial spondyloarthritis; MRI; artificial intelligence; machine learning; sacroiliitis; ANKYLOSING-SPONDYLITIS; RADIOGRAPHS; DIAGNOSIS; MRI;
D O I
10.3389/fimmu.2023.1278247
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
BackgroundMagnetic resonance imaging (MRI) is important for the early detection of axial spondyloarthritis (axSpA). We developed an artificial intelligence (AI) model for detecting sacroiliitis in patients with axSpA using MRI.MethodsThis study included MRI examinations of patients who underwent semi-coronal MRI scans of the sacroiliac joints owing to chronic back pain with short tau inversion recovery (STIR) sequences between January 2010 and December 2021. Sacroiliitis was defined as a positive MRI finding according to the ASAS classification criteria for axSpA. We developed a two-stage framework. First, the Faster R-CNN network extracted regions of interest (ROIs) to localize the sacroiliac joints. Maximum intensity projection (MIP) of three consecutive slices was used to mimic the reading of two adjacent slices. Second, the VGG-19 network determined the presence of sacroiliitis in localized ROIs. We augmented the positive dataset six-fold. The sacroiliitis classification performance was measured using the sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC). The prediction models were evaluated using three-round three-fold cross-validation.ResultsA total of 296 participants with 4,746 MRI slices were included in the study. Sacroiliitis was identified in 864 MRI slices of 119 participants. The mean sensitivity, specificity, and AUROC for the detection of sacroiliitis were 0.725 (95% CI, 0.705-0.745), 0.936 (95% CI, 0.924-0.947), and 0.830 (95%CI, 0.792-0.868), respectively, at the image level and 0.947 (95% CI, 0.912-0.982), 0.691 (95% CI, 0.603-0.779), and 0.816 (95% CI, 0.776-0.856), respectively, at the patient level. In the original model, without using MIP and dataset augmentation, the mean sensitivity, specificity, and AUROC were 0.517 (95% CI, 0.493-0.780), 0.944 (95% CI, 0.933-0.955), and 0.731 (95% CI, 0.681-0.780), respectively, at the image level and 0.806 (95% CI, 0.729-0.883), 0.617 (95% CI, 0.523-0.711), and 0.711 (95% CI, 0.660-0.763), respectively, at the patient level. The performance was improved by MIP techniques and data augmentation.ConclusionAn AI model was developed for the detection of sacroiliitis using MRI, compatible with the ASAS criteria for axSpA, with the potential to aid MRI application in a wider clinical setting.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Magnetic resonance imaging assessment of ASAS-defined active sacroiliitis in patients with inflammatory back pain and suspected axial spondyloarthritis: a study of reliability
    Cereser, L.
    Zabotti, A.
    Zancan, G.
    Quartuccio, L.
    Ciccio, C.
    Giovannini, I.
    De Vita, S.
    Zuiani, C.
    Girometti, R.
    CLINICAL AND EXPERIMENTAL RHEUMATOLOGY, 2021, 39 (06) : 1331 - 1337
  • [32] Magnetic resonance imaging for the detection of early sacroiliitis.
    Hart, LE
    Friedman, L
    Jurriaans, E
    White, P
    Buchanan, WW
    ARTHRITIS AND RHEUMATISM, 1996, 39 (09): : 1077 - 1077
  • [33] Evaluation of magnetic resonance imaging for the detection of sacroiliitis in patients with early seronegative spondylarthropathy
    Remy, M
    Bouillet, P
    Bertin, P
    Leblanche, AF
    Bonnet, C
    Pascaud, JL
    BoncoeurMartel, MP
    Treves, R
    REVUE DU RHUMATISME, 1996, 63 (09): : 577 - 583
  • [34] Pathological Brain Detection by Artificial Intelligence in Magnetic Resonance Imaging Scanning
    Wang, Shuihua
    Zhang, Yin
    Zhan, Tianmin
    Phillips, Preetha
    Zhang, Yudong
    Liu, Ge
    Lu, Siyuan
    Wu, Xueyan
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2016, 156 : 105 - 133
  • [35] Challenges in the Diagnosis of Axial Spondyloarthritis Using Magnetic Resonance Imaging
    Bach, A. C.
    Hermann, K-G A.
    AKTUELLE RHEUMATOLOGIE, 2017, 42 (05) : 404 - 410
  • [36] Guidelines for magnetic resonance imaging in axial spondyloarthritis: A Delphi study
    Narvaez, J. A.
    Bueno Horcajadas, A.
    de Miguel Mendieta, E.
    Sanz Sanz, J.
    RADIOLOGIA, 2015, 57 (06): : 512 - 522
  • [37] Defining active sacroiliitis on magnetic resonance imaging (MRI) for classification of axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI group
    Rudwaleit, M.
    Jurik, A. G.
    Hermann, K-G A.
    Landewe, R.
    van der Heijde, D.
    Baraliakos, X.
    Marzo-Ortega, H.
    Ostergaard, M.
    Braun, J.
    Sieper, J.
    ANNALS OF THE RHEUMATIC DISEASES, 2009, 68 (10) : 1520 - 1527
  • [38] Immunohistological analysis of active sacroiliitis in patients with axial spondyloarthritis
    Peng, Jianhua
    Gong, Yao
    Zhang, Yuping
    Wang, Danmin
    Xiao, Zhengyu
    MEDICINE, 2017, 96 (16)
  • [39] REPRODUCIBILITY OF MAGNETIC RESONANCE DIFFUSION WEIGHTED IMAGING IN AXIAL SPONDYLOARTHRITIS PATIENTS AND HEALTHY SUBJECTS
    Moller, J. M.
    Sorensen, I. J.
    Thomsen, H. S.
    Osterggard, M.
    Madsen, O. R.
    Pedersen, S. J.
    ANNALS OF THE RHEUMATIC DISEASES, 2014, 73 : 1122 - 1122
  • [40] Assessment of Sacroiliitis at Diagnosis of Juvenile Spondyloarthritis by Radiography, Magnetic Resonance Imaging, and Clinical Examination
    Weiss, Pamela F.
    Xiao, Rui
    Biko, David M.
    Chauvin, Nancy A.
    ARTHRITIS CARE & RESEARCH, 2016, 68 (02) : 187 - 194