Artificial Intelligence and Cardiovascular Magnetic Resonance Imaging in Myocardial Infarction Patients

被引:5
|
作者
Chong, Jun Hua [1 ,2 ]
Abdulkareem, Musa [3 ,4 ,5 ]
Petersen, Steffen E. [3 ,4 ,5 ,6 ]
Khanji, Mohammed Y. [3 ,4 ,7 ]
机构
[1] Natl Heart Ctr Singapore, Singapore, Singapore
[2] Duke Natl Univ Singapore Med Sch, Cardiovasc Sci Acad Clin Programme, Singapore, Singapore
[3] Barts Hlth Natl Hlth Serv Trust, Barts Heart Ctr, London, England
[4] Queen Mary Univ London, William Harvey Res Inst, Barts Biomed Res Ctr, Natl Inst Hlth Res, London, England
[5] Hlth Data Res UK, London, England
[6] Alan Turing Inst, London, England
[7] Barts Hlth NHS Trust, Newham Univ Hosp, Dept Cardiol, London, England
基金
英国科研创新办公室;
关键词
ST-SEGMENT-ELEVATION; LATE GADOLINIUM ENHANCEMENT; TEXTURE ANALYSIS; MICROVASCULAR OBSTRUCTION; COMPONENT ANALYSIS; SIZE; CMR; RADIOMICS; PERFUSION; RECOVERY;
D O I
10.1016/j.cpcardiol.2022.101330
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cardiovascular magnetic resonance (CMR) is an important cardiac imaging tool for assessing the prognostic extent of myocardial injury after myocardial infarction (MI). Within the context of clinical trials, CMR is also useful for assessing the efficacy of potential cardioprotective therapies in reducing MI size and preventing adverse left ventricular (LV) remodelling in reperfused MI. However, manual contouring and analysis can be time-consuming with interobserver and intra-observer variability, which can in turn lead to reduction in accuracy and precision of analysis. There is thus a need to automate CMR scan analysis in MI patients to save time, increase accuracy, increase reproducibility and increase precision. In this regard, automated imaging analysis techniques based on artificial intelligence (AI) that are developed with machine learning (ML), and more specifically deep learning (DL) strategies, can enable efficient, robust, accurate and clinician-friendly tools to be built so as to try and improve both clinician productivity and quality of patient care. In this review, we discuss basic concepts of ML in CMR, important prognostic CMR imaging biomarkers in MI and the utility of current ML applications in their analysis as assessed in research studies. We highlight potential barriers to the mainstream implementation of these automated strategies and discuss related governance and quality control issues. Lastly, we discuss the future role of ML applications in clinical trials and the need for global collaboration in growing this field.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Artificial Intelligence Uncovered Clinical Factors for Cardiovascular Events in Myocardial Infarction Patients with Glucose Intolerance
    Kazuhiro Shindo
    Hiroki Fukuda
    Tatsuro Hitsumoto
    Yohei Miyashita
    Jiyoong Kim
    Shin Ito
    Takashi Washio
    Masafumi Kitakaze
    Cardiovascular Drugs and Therapy, 2020, 34 : 535 - 545
  • [32] Artificial Intelligence Uncovered Clinical Factors for Cardiovascular Events in Myocardial Infarction Patients with Glucose Intolerance
    Shindo, Kazuhiro
    Fukuda, Hiroki
    Hitsumoto, Tatsuro
    Miyashita, Yohei
    Kim, Jiyoong
    Ito, Shin
    Washio, Takashi
    Kitakaze, Masafumi
    CARDIOVASCULAR DRUGS AND THERAPY, 2020, 34 (04) : 535 - 545
  • [33] Characterization of Acute Myocardial Infarction by Magnetic Resonance Imaging
    Mather, Adam N.
    Greenwood, John P.
    Plein, Sven
    JACC-CARDIOVASCULAR IMAGING, 2009, 2 (09) : 1141 - 1143
  • [34] Role of Cardiac Magnetic Resonance Imaging in Myocardial Infarction
    Pontone, Gianluca
    Carita, Patrizia
    Rabbat, Mark G.
    Guglielmo, Marco
    Baggiano, Andrea
    Muscogiuri, Giuseppe
    Guaricci, Andrea I.
    CURRENT CARDIOLOGY REPORTS, 2017, 19 (10)
  • [35] Complications of myocardial infarction in cardiac magnetic resonance imaging
    Spiewak, Mateusz
    Malek, Lukasz A.
    Misko, Jolanta
    POSTEPY W KARDIOLOGII INTERWENCYJNEJ, 2011, 7 (01): : 72 - 78
  • [36] Magnetic resonance imaging of acute myocardial ischaemia and infarction
    Garot, J
    ARCHIVES DES MALADIES DU COEUR ET DES VAISSEAUX, 2003, 96 (12): : 1213 - 1218
  • [37] Cardiac magnetic resonance imaging of acute myocardial infarction
    Zalewski, Jaroslaw
    KARDIOLOGIA POLSKA, 2010, 68 : S441 - S447
  • [38] Role of Cardiac Magnetic Resonance Imaging in Myocardial Infarction
    Gianluca Pontone
    Patrizia Carità
    Mark G. Rabbat
    Marco Guglielmo
    Andrea Baggiano
    Giuseppe Muscogiuri
    Andrea I. Guaricci
    Current Cardiology Reports, 2017, 19
  • [39] Detection of Intracoronary Thrombus by Magnetic Resonance Imaging in Patients With Acute Myocardial Infarction
    Jansen, C. H. P.
    Perera, D.
    Makowski, M. R.
    Wiethoff, A. J.
    Phinikaridou, A.
    Razavi, R. M.
    Marber, M. S.
    Greil, G. F.
    Nagel, E.
    Maintz, D.
    Redwood, S.
    Botnar, R. M.
    CIRCULATION, 2011, 124 (04) : 416 - 424
  • [40] Cardiovascular magnetic resonance imaging of myocardial oedema following acute myocardial infarction: Is whole heart coverage necessary?
    Stephen Hamshere
    Daniel A. Jones
    Cyril Pellaton
    Danielle Longchamp
    Tom Burchell
    Saidi Mohiddin
    James C. Moon
    Jens Kastrup
    Didier Locca
    Steffen E. Petersen
    Mark Westwood
    Anthony Mathur
    Journal of Cardiovascular Magnetic Resonance, 18