Artificial Intelligence and Cardiovascular Magnetic Resonance Imaging in Myocardial Infarction Patients

被引:5
|
作者
Chong, Jun Hua [1 ,2 ]
Abdulkareem, Musa [3 ,4 ,5 ]
Petersen, Steffen E. [3 ,4 ,5 ,6 ]
Khanji, Mohammed Y. [3 ,4 ,7 ]
机构
[1] Natl Heart Ctr Singapore, Singapore, Singapore
[2] Duke Natl Univ Singapore Med Sch, Cardiovasc Sci Acad Clin Programme, Singapore, Singapore
[3] Barts Hlth Natl Hlth Serv Trust, Barts Heart Ctr, London, England
[4] Queen Mary Univ London, William Harvey Res Inst, Barts Biomed Res Ctr, Natl Inst Hlth Res, London, England
[5] Hlth Data Res UK, London, England
[6] Alan Turing Inst, London, England
[7] Barts Hlth NHS Trust, Newham Univ Hosp, Dept Cardiol, London, England
基金
英国科研创新办公室;
关键词
ST-SEGMENT-ELEVATION; LATE GADOLINIUM ENHANCEMENT; TEXTURE ANALYSIS; MICROVASCULAR OBSTRUCTION; COMPONENT ANALYSIS; SIZE; CMR; RADIOMICS; PERFUSION; RECOVERY;
D O I
10.1016/j.cpcardiol.2022.101330
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cardiovascular magnetic resonance (CMR) is an important cardiac imaging tool for assessing the prognostic extent of myocardial injury after myocardial infarction (MI). Within the context of clinical trials, CMR is also useful for assessing the efficacy of potential cardioprotective therapies in reducing MI size and preventing adverse left ventricular (LV) remodelling in reperfused MI. However, manual contouring and analysis can be time-consuming with interobserver and intra-observer variability, which can in turn lead to reduction in accuracy and precision of analysis. There is thus a need to automate CMR scan analysis in MI patients to save time, increase accuracy, increase reproducibility and increase precision. In this regard, automated imaging analysis techniques based on artificial intelligence (AI) that are developed with machine learning (ML), and more specifically deep learning (DL) strategies, can enable efficient, robust, accurate and clinician-friendly tools to be built so as to try and improve both clinician productivity and quality of patient care. In this review, we discuss basic concepts of ML in CMR, important prognostic CMR imaging biomarkers in MI and the utility of current ML applications in their analysis as assessed in research studies. We highlight potential barriers to the mainstream implementation of these automated strategies and discuss related governance and quality control issues. Lastly, we discuss the future role of ML applications in clinical trials and the need for global collaboration in growing this field.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Quantitative Evaluation of Myocardial Strain After Myocardial Infarction with Cardiovascular Magnetic Resonance Tissue-Tracking Imaging
    Zou, Qian
    Zheng, Tian
    Zhou, Shu-Li
    Tang, Xue-Pei
    Li, Shu-Hao
    Zhou, Wei
    Gong, Liang-Geng
    INTERNATIONAL HEART JOURNAL, 2020, 61 (03) : 429 - 436
  • [42] Evaluation of myocardial viability in myocardial infarction patients by magnetic resonance perfusion and delayed enhancement imaging
    Sun, W.
    Sun, L.
    Yang, F.
    Zhao, X.
    Cai, R.
    Yuan, W.
    HERZ, 2019, 44 (08) : 735 - 742
  • [43] Cardiovascular magnetic resonance imaging of myocardial oedema following acute myocardial infarction: Is whole heart coverage necessary?
    Hamshere, Stephen
    Jones, Daniel A.
    Pellaton, Cyril
    Longchamp, Danielle
    Burchell, Tom
    Mohiddin, Saidi
    Moon, James C.
    Kastrup, Jens
    Locca, Didier
    Petersen, Steffen E.
    Westwood, Mark
    Mathur, Anthony
    JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2016, 18
  • [44] Intramyocardial haemorrhage as a rare complication of myocardial infarction - the diagnostic value of cardiovascular magnetic resonance imaging
    Glaveckaite, Sigita
    Palionis, Darius
    Valeviciene, Nomeda
    Kontrimaviciute, Egle
    Serpytis, Pranas
    KARDIOLOGIA POLSKA, 2017, 75 (09) : 934 - 934
  • [45] Myocardial infarction after coronary revascularization: role of cardiovascular magnetic resonance oedema imaging - Reply
    Steuer, J
    Bjerner, T
    EUROPEAN HEART JOURNAL, 2004, 25 (23) : 2173 - 2173
  • [46] Unrecognized myocardial infarction by echocardiography in relation to infarct characteristics as assessed by cardiovascular magnetic resonance imaging
    Caroline Jaarsma
    Simon Schalla
    Emile C Cheriex
    Martijn Smulders
    Ivo M van Dongen
    Patricia J Nelemans
    Joachim E Wildberger
    Harry J Crijns
    Sebastiaan C Bekkers
    Journal of Cardiovascular Magnetic Resonance, 14 (Suppl 1)
  • [47] AI-powered contrast-free cardiovascular magnetic resonance imaging for myocardial infarction
    Cicek, Vedat
    Bagci, Ulas
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11
  • [48] Correlation of anteroseptal ST elevation with myocardial infarction territories through cardiovascular magnetic resonance imaging
    Allencherril, Joseph
    Fakhri, Yama
    Engblom, Henrik
    Heiberg, Einar
    Carlsson, Marcus
    Dubois-Rande, Jean-Luc
    Halvorsen, Sigrun
    Hall, Trygve S.
    Larsen, Alf-Inge
    Jensen, Svend Eggert
    Arheden, Hakan
    Atar, Dan
    Clemmensen, Peter
    Ripa, Maria Sejersten
    Birnbaum, Yochai
    JOURNAL OF ELECTROCARDIOLOGY, 2018, 51 (04) : 563 - 568
  • [49] Association Between Myocardial Infarction and Brain Infarction on Magnetic Resonance Imaging
    Merkler, Alexander
    Baradaran, Hediyeh
    Myeni, Pavan K.
    Gialdini, Gino
    Navi, Babak B.
    Goyal, Parag
    Safford, Monika M.
    Okin, Peter M.
    Weinsaft, Jonathan W.
    Gupta, Ajay
    Kamel, Hooman
    STROKE, 2018, 49
  • [50] Myocardial damage in patients with immunological diseases evaluated by cardiovascular magnetic resonance imaging
    Sanchez Martinez, M.
    Hurtado Duarte, A. M.
    Chang Azanza, D.
    Chapa Ibarguengoitia, M.
    Rosales Uvera, S. G.
    EUROPEAN HEART JOURNAL, 2022, 43 : 182 - 182