On optimal (v, 5, 2, 1) optical orthogonal codes

被引:15
|
作者
Buratti, Marco [1 ]
Pasotti, Anita [2 ]
Wu, Dianhua [3 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[2] Univ Brescia, Dipartimento Matemat, Fac Ingn, I-25133 Brescia, Italy
[3] Guangxi Normal Univ, Dept Math, Guilin 541004, Peoples R China
关键词
Optimal optical orthogonal code; Difference family; Difference matrix; RECURSIVE CONSTRUCTIONS; OPTIMAL OOCS; FAMILIES;
D O I
10.1007/s10623-012-9654-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The size of a (v, 5, 2, 1) optical orthogonal code (OOC) is shown to be at most equal to when v a parts per thousand 11 (mod 132) or v a parts per thousand 154 (mod 924), and at most equal to in all the other cases. Thus a (v, 5, 2, 1)-OOC is naturally said to be optimal when its size reaches the above bound. Many direct and recursive constructions for infinite classes of optimal (v, 5, 2, 1)-OOCs are presented giving, in particular, a very strong indication about the existence of an optimal (p, 5, 2, 1)-OOC for every prime p a parts per thousand 1 (mod 12).
引用
收藏
页码:349 / 371
页数:23
相关论文
共 50 条
  • [11] The Existence of Optimal (v, 4, 1) Optical Orthogonal Codes Achieving the Johnson Bound
    Zhao, Chenya
    Chang, Yanxun
    Feng, Tao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (12) : 8746 - 8757
  • [12] Bounds and Constructions of Optimal (n, 4, 2, 1) Optical Orthogonal Codes
    Momihara, Koji
    Buratti, Marco
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (02) : 514 - 523
  • [13] Construction for optimal optical orthogonal codes
    An, XQ
    Qiu, K
    2002 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS AND WEST SINO EXPOSITION PROCEEDINGS, VOLS 1-4, 2002, : 96 - 100
  • [14] Constructions for optimal optical orthogonal codes
    Chang, YX
    Miao, Y
    DISCRETE MATHEMATICS, 2003, 261 (1-3) : 127 - 139
  • [15] New Constructions of Asymptotically Optimal Optical Orthogonal Codes With λ=1
    Chung, Jin-Ho
    Yang, Kyeongcheol
    2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [16] GEOMETRIC CONSTRUCTIONS OF OPTIMAL OPTICAL ORTHOGONAL CODES
    Alderson, T. L.
    Mellinger, K. E.
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2008, 2 (04) : 451 - 467
  • [17] Construction of Optimal 2D Optical Codes Using (n, w, 2, 2) Optical Orthogonal Codes
    Lin, Yu-Chei
    Yang, Guu-Chang
    Chang, Cheng-Yuan
    Kwong, Wing C.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2011, 59 (01) : 194 - 200
  • [18] Optimal 2-D (n x m, 3, 2, 1)-optical Orthogonal Codes
    Wang, Xiaomiao
    Chang, Yanxun
    Feng, Tao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (01) : 710 - 725
  • [19] Bounds and Constructions on (v, 4, 3, 2) Optical Orthogonal Codes
    Wang, Lidong
    Chang, Yanxun
    JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (11) : 453 - 472
  • [20] Optimal(24u, {3, 4}, 1, {2/3, 1/3}) Optical Orthogonal Codes
    Shihua HUANG
    Xiaomiao WANG
    Journal of Mathematical Research with Applications, 2016, 36 (04) : 379 - 393