On optimal (v, 5, 2, 1) optical orthogonal codes

被引:15
|
作者
Buratti, Marco [1 ]
Pasotti, Anita [2 ]
Wu, Dianhua [3 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[2] Univ Brescia, Dipartimento Matemat, Fac Ingn, I-25133 Brescia, Italy
[3] Guangxi Normal Univ, Dept Math, Guilin 541004, Peoples R China
关键词
Optimal optical orthogonal code; Difference family; Difference matrix; RECURSIVE CONSTRUCTIONS; OPTIMAL OOCS; FAMILIES;
D O I
10.1007/s10623-012-9654-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The size of a (v, 5, 2, 1) optical orthogonal code (OOC) is shown to be at most equal to when v a parts per thousand 11 (mod 132) or v a parts per thousand 154 (mod 924), and at most equal to in all the other cases. Thus a (v, 5, 2, 1)-OOC is naturally said to be optimal when its size reaches the above bound. Many direct and recursive constructions for infinite classes of optimal (v, 5, 2, 1)-OOCs are presented giving, in particular, a very strong indication about the existence of an optimal (p, 5, 2, 1)-OOC for every prime p a parts per thousand 1 (mod 12).
引用
收藏
页码:349 / 371
页数:23
相关论文
共 50 条