On optimal (v, 5, 2, 1) optical orthogonal codes

被引:15
|
作者
Buratti, Marco [1 ]
Pasotti, Anita [2 ]
Wu, Dianhua [3 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[2] Univ Brescia, Dipartimento Matemat, Fac Ingn, I-25133 Brescia, Italy
[3] Guangxi Normal Univ, Dept Math, Guilin 541004, Peoples R China
关键词
Optimal optical orthogonal code; Difference family; Difference matrix; RECURSIVE CONSTRUCTIONS; OPTIMAL OOCS; FAMILIES;
D O I
10.1007/s10623-012-9654-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The size of a (v, 5, 2, 1) optical orthogonal code (OOC) is shown to be at most equal to when v a parts per thousand 11 (mod 132) or v a parts per thousand 154 (mod 924), and at most equal to in all the other cases. Thus a (v, 5, 2, 1)-OOC is naturally said to be optimal when its size reaches the above bound. Many direct and recursive constructions for infinite classes of optimal (v, 5, 2, 1)-OOCs are presented giving, in particular, a very strong indication about the existence of an optimal (p, 5, 2, 1)-OOC for every prime p a parts per thousand 1 (mod 12).
引用
收藏
页码:349 / 371
页数:23
相关论文
共 50 条
  • [41] New Optimal Variable-Weight Optical Orthogonal Codes
    Wu, Dianhua
    Cao, Jiayun
    Fan, Pingzhi
    SEQUENCES AND THEIR APPLICATIONS-SETA 2010, 2010, 6338 : 102 - 112
  • [42] Combinatorial constructions of optimal optical orthogonal codes with weight 4
    Chang, YX
    Fuji-Hara, R
    Miao, Y
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (05) : 1283 - 1292
  • [43] Constructions of Optimal Variable-Weight Optical Orthogonal Codes
    Zhao, Hengming
    Wu, Dianhua
    Fan, Pingzhi
    JOURNAL OF COMBINATORIAL DESIGNS, 2010, 18 (04) : 274 - 291
  • [44] On constructions for optimal two-dimensional optical orthogonal codes
    Wang, Jianmin
    Shan, Xiuling
    Yin, Jianxing
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 54 (01) : 43 - 60
  • [45] On constructions for optimal two-dimensional optical orthogonal codes
    Jianmin Wang
    Xiuling Shan
    Jianxing Yin
    Designs, Codes and Cryptography, 2010, 54 : 43 - 60
  • [46] Further results on optimal optical orthogonal codes with weight 4
    Chang, YX
    Yin, JX
    DISCRETE MATHEMATICS, 2004, 279 (1-3) : 135 - 151
  • [47] A new class of optimal optical orthogonal codes with weight six
    Wang, Su
    Wang, Lingye
    Wang, Jinhua
    2015 SEVENTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2015, : 61 - 64
  • [48] A new class of optimal optical orthogonal codes with weight five
    Ma, SK
    Chang, YX
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1848 - 1850
  • [49] Optimal 2-D (nxm,3,2,1)-optical orthogonal codes and related equi-difference conflict avoiding codes
    Feng, Tao
    Wang, Lidong
    Wang, Xiaomiao
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (07) : 1499 - 1520
  • [50] A construction for optical orthogonal codes with correlation 1
    Martirosyan, S
    Vinck, AJH
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2002, E85A (01) : 269 - 272