Optimal 2-D (n x m, 3, 2, 1)-optical Orthogonal Codes

被引:22
|
作者
Wang, Xiaomiao [1 ]
Chang, Yanxun [2 ]
Feng, Tao [2 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[2] Beijing Jiaotong Univ, Inst Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Group divisible design (GDD); optical orthogonal code; optimal; optical code-division multiple access (OCDMA); two-dimensional optical orthogonal code; MULTIPLE-ACCESS TECHNIQUES; OPTICAL FIBER NETWORKS; COMBINATORIAL CONSTRUCTIONS; DIFFERENCE-FAMILIES; OPTIMAL OOCS; PERFORMANCE; BOUNDS; CDMA; DESIGNS;
D O I
10.1109/TIT.2012.2214025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optical orthogonal codes are commonly used as signature codes for optical code-division multiple access systems. So far, research on 2-D optical orthogonal codes has mainly concentrated on the same autocorrelation and cross-correlation constraints. In this paper, we are concerned about optimal 2-D optical orthogonal codes with the autocorrelation lambda(a) and the cross-correlation 1. Some combinatorial constructions for 2-D (n x m, k, lambda(a), 1-optical orthogonal codes are presented. When k = 3 and lambda(a) = 2, the exact number of codewords of an optimal 2-D (n x m, 3, 2, 1)-optical orthogonal code is determined for any positive integers n equivalent to 0, 1, 3, 6, 9, 10 (mod 12) and m equivalent to 2 (mod 4).
引用
收藏
页码:710 / 725
页数:16
相关论文
共 50 条
  • [1] SOME PROGRESS ON OPTIMAL 2-D (n x m, 3, 2,1)-OPTICAL ORTHOGONAL CODES
    Yang, Kailu
    Wang, Xiaomiao
    Zhang, Menglong
    Wang, Lidong
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2021, : 605 - 625
  • [2] A New Family of Asymptotically Optimal 2-D Optical Orthogonal Codes
    Li, Xiuli
    Li, Jing
    PROCEEDINGS OF 2016 9TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2016, : 47 - 51
  • [3] Optimal 2-D (nxm,3,2,1)-optical orthogonal codes and related equi-difference conflict avoiding codes
    Feng, Tao
    Wang, Lidong
    Wang, Xiaomiao
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (07) : 1499 - 1520
  • [4] Construction of Optimal 2D Optical Codes Using (n, w, 2, 2) Optical Orthogonal Codes
    Lin, Yu-Chei
    Yang, Guu-Chang
    Chang, Cheng-Yuan
    Kwong, Wing C.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2011, 59 (01) : 194 - 200
  • [5] Constructions for (2 x n,{2,2},1)-2D optical orthogonal codes
    Zhang, Yuan
    Peng, Mao
    OPTICAL SWITCHING AND NETWORKING, 2013, 10 (04) : 458 - 462
  • [6] Constructions of Optimal 2-D Optical Orthogonal Codes via Generalized Cyclotomic Classes
    Cai, Han
    Liang, Hongbin
    Tang, Xiaohu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (01) : 688 - 695
  • [7] Performance Investigation of 2-D Optical Orthogonal Codes for OCDMA
    Kumar A.
    Bharti M.
    Kumar T.
    Journal of Optical Communications, 2019, 40 (04): : 455 - 462
  • [8] New constructions and bounds for 2-D optical orthogonal codes
    Omrani, R
    Elia, P
    Kumar, PV
    SEQUENCES AND THEIR APPLICATIONS - SETA 2004, 2005, 3486 : 389 - 395
  • [9] Improved constructions and bounds for 2-D optical orthogonal codes
    Omrani, R
    Kumar, PV
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 127 - 131
  • [10] Bounds and Constructions of Optimal (n, 4, 2, 1) Optical Orthogonal Codes
    Momihara, Koji
    Buratti, Marco
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (02) : 514 - 523