Optimal 2-D (n x m, 3, 2, 1)-optical Orthogonal Codes

被引:22
|
作者
Wang, Xiaomiao [1 ]
Chang, Yanxun [2 ]
Feng, Tao [2 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[2] Beijing Jiaotong Univ, Inst Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Group divisible design (GDD); optical orthogonal code; optimal; optical code-division multiple access (OCDMA); two-dimensional optical orthogonal code; MULTIPLE-ACCESS TECHNIQUES; OPTICAL FIBER NETWORKS; COMBINATORIAL CONSTRUCTIONS; DIFFERENCE-FAMILIES; OPTIMAL OOCS; PERFORMANCE; BOUNDS; CDMA; DESIGNS;
D O I
10.1109/TIT.2012.2214025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optical orthogonal codes are commonly used as signature codes for optical code-division multiple access systems. So far, research on 2-D optical orthogonal codes has mainly concentrated on the same autocorrelation and cross-correlation constraints. In this paper, we are concerned about optimal 2-D optical orthogonal codes with the autocorrelation lambda(a) and the cross-correlation 1. Some combinatorial constructions for 2-D (n x m, k, lambda(a), 1-optical orthogonal codes are presented. When k = 3 and lambda(a) = 2, the exact number of codewords of an optimal 2-D (n x m, 3, 2, 1)-optical orthogonal code is determined for any positive integers n equivalent to 0, 1, 3, 6, 9, 10 (mod 12) and m equivalent to 2 (mod 4).
引用
收藏
页码:710 / 725
页数:16
相关论文
共 50 条
  • [31] Comparative analysis of optical 2D codes using (n, w, λa, λc) optical orthogonal codes for optical CDMA
    Bharti M.
    Kumar M.
    Sharma A.K.
    Optical Memory and Neural Networks, 2016, 25 (3) : 149 - 159
  • [32] (m, n, 3, 1) Optical Orthogonal Signature Pattern Codes With Maximum Possible Size
    Pan, Rong
    Chang, Yanxun
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) : 1139 - 1148
  • [33] CONSTRUCTIONS OF BALANCED (N, M, {4, 5}, 1; 2) MULTILENGTH VARIABLE-WEIGHT OPTICAL ORTHOGONAL CODES
    Zhao, H. E. N. G. M. I. N. G.
    Qin, R. O. N. G. C. U. N.
    Wu, D. I. A. N. H. U. A.
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022,
  • [34] CONSTRUCTIONS OF BALANCED (N,M, {4; 5}, 1; 2) MULTILENGTH VARIABLE-WEIGHT OPTICAL ORTHOGONAL CODES
    Zhao, Hengming
    Qin, Rongcun
    Wu, Dianhua
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (04) : 1197 - 1209
  • [35] A N x N Architecture for 2-D Mirror-Type Optical Switches
    Chen, Shou-Heng
    Fan, Kuang-Chao
    Chung, Tien-Tung
    Yang, Yao-Joe Joseph
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2009, 27 (14) : 2843 - 2851
  • [36] 1-D AND 2-D ALGORITHMS FOR ORTHOGONAL TRANSFORMATIONS
    CORINTHIOS, MJ
    GEADAH, Y
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1985, 27 (5-6) : 441 - 452
  • [37] NEW OPTIMAL (v, {3, 5}, 1, Q) OPTICAL ORTHOGONAL CODES
    Yu, Huangsheng
    Wu, Dianhua
    Wang, Jinhua
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (04) : 811 - 823
  • [38] New family of 2-D optical orthogonal codes based on prime code and one-coincidence sequence
    Advanced Technology Research Center, Shenzhen University, Shenzhen 518060, China
    Guangdianzi Jiguang, 2007, 4 (436-438): : 436 - 438
  • [39] Construction and performance analysis of 2-D variable-length variable-weight optical orthogonal codes
    Yin, Hongxi
    Liang, Wei
    Ma, Le
    PHOTONIC NETWORK COMMUNICATIONS, 2009, 18 (01) : 122 - 128
  • [40] Construction and performance analysis of 2-D variable-length variable-weight optical orthogonal codes
    Hongxi Yin
    Wei Liang
    Le Ma
    Photonic Network Communications, 2009, 18 : 122 - 128