Optimal 2-D (n x m, 3, 2, 1)-optical Orthogonal Codes

被引:22
|
作者
Wang, Xiaomiao [1 ]
Chang, Yanxun [2 ]
Feng, Tao [2 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[2] Beijing Jiaotong Univ, Inst Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Group divisible design (GDD); optical orthogonal code; optimal; optical code-division multiple access (OCDMA); two-dimensional optical orthogonal code; MULTIPLE-ACCESS TECHNIQUES; OPTICAL FIBER NETWORKS; COMBINATORIAL CONSTRUCTIONS; DIFFERENCE-FAMILIES; OPTIMAL OOCS; PERFORMANCE; BOUNDS; CDMA; DESIGNS;
D O I
10.1109/TIT.2012.2214025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optical orthogonal codes are commonly used as signature codes for optical code-division multiple access systems. So far, research on 2-D optical orthogonal codes has mainly concentrated on the same autocorrelation and cross-correlation constraints. In this paper, we are concerned about optimal 2-D optical orthogonal codes with the autocorrelation lambda(a) and the cross-correlation 1. Some combinatorial constructions for 2-D (n x m, k, lambda(a), 1-optical orthogonal codes are presented. When k = 3 and lambda(a) = 2, the exact number of codewords of an optimal 2-D (n x m, 3, 2, 1)-optical orthogonal code is determined for any positive integers n equivalent to 0, 1, 3, 6, 9, 10 (mod 12) and m equivalent to 2 (mod 4).
引用
收藏
页码:710 / 725
页数:16
相关论文
共 50 条