On optimal ( Z 6 m x Z 6 n , 4 , 1 ) and ( Z 2 m x Z 18 n , 4 , 1 ) difference packings and their related codes

被引:0
|
作者
Chen, Jingyuan [1 ]
Ji, Lijun [2 ]
机构
[1] Xinyang Normal Univ, Coll Math & Stat, Xinyang 464000, Peoples R China
[2] Soochow Univ, Dept Math, Suzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
difference matrix; difference packing; optical orthogonal signature pattern code; relative difference family; strong difference family; SIGNATURE PATTERN CODES; COLLISION PARAMETER 2; COMBINATORIAL CONSTRUCTIONS; STEINER; 2-DESIGNS; FAMILIES; MATRICES; DESIGNS;
D O I
10.1002/jcd.21812
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a direct construction of a ( Z p x G , { 0 } x G , 4 , 1 ) relative difference family for G is an element of { Z 6 x Z 6 , Z 2 x Z 18 , Z 6 x Z 18 , Z 2 x Z 54 } and every prime p equivalent to 3 ( mod 4 ) with p > 3. These allow us to construct an optimal ( Z 6 m x Z 6 n , 4 , 1 ) difference packing and an optimal ( Z 2 m x Z 18 n , 4 , 1 ) difference packing for every pair of positive integers ( m , n ). The corresponding optimal optical orthogonal signature pattern codes are also obtained.
引用
收藏
页码:73 / 90
页数:18
相关论文
共 50 条
  • [1] BALANCED (Z2u x Z38v, {3, 4, 5}, 1) DIFFERENCE PACKINGS AND RELATED CODES
    Zhao, Hengming
    Qin, Rongcun
    Wu, Dianhua
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2024, 18 (01) : 163 - 178
  • [2] A density functional theory study on boundary of "superreduced" transition metal carbonyl anions [M(CO)n]Ζ- (M=Cr, n=5, 4, 3, z=2, 4, 6, M=Mn, n=5, 4, 3, z=1, 3, 5, M=Fe, n=4, 3, 2, z=2, 4, 6, M=Co, n=4, 3, 2, z=1, 3, 5)
    Chen, ZD
    Deng, YQ
    Bian, J
    Li, LM
    Xu, GX
    THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE, 1998, 434 : 155 - 161
  • [3] Blocks with defect group Z2n x Z2n x Z2m
    Wu, Chao
    Zhang, Kun
    Zhou, Yuanyang
    JOURNAL OF ALGEBRA, 2018, 510 : 469 - 498
  • [4] Total graph of the ring Z(n) x Z(m)
    Dhorajia, Alpesh M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (01)
  • [5] The curves X(m)Y(n)+Y(m)Z(n)+Z(m)X(n)=0 and decomposition of a Jacobian
    Bennama, H
    Carbonne, P
    JOURNAL OF ALGEBRA, 1997, 188 (02) : 409 - 417
  • [6] Linear codes and the existence of a reversible Hadamard difference set in Z(2) x Z(2) x Z(5)(4)
    vanEupen, M
    Tonchev, VD
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 79 (01) : 161 - 167
  • [7] On balanced (Z4u x Z8v, {4, 5}, 1) difference packings
    Zhao, Hengming
    Qin, Rongcun
    Wu, Dianhua
    DISCRETE MATHEMATICS, 2021, 344 (11)
  • [8] ON THE EQUATIONS m/n=1/x ± 1/y ± 1/z
    Nazardonyavi, Sadegh
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (02) : 669 - 688
  • [9] Topological Hochschild homology of extensions of Z/pZ by polynomials, and of Z[x]/(x(n)) and Z[x]/(x(n)-1)
    Lindenstrauss, A
    K-THEORY, 1996, 10 (03): : 239 - 265
  • [10] ON THE EQUATION 4/N = 1/X + 1/Y + 1/Z
    DELANG, L
    JOURNAL OF NUMBER THEORY, 1981, 13 (04) : 485 - 494