On optimal ( Z 6 m x Z 6 n , 4 , 1 ) and ( Z 2 m x Z 18 n , 4 , 1 ) difference packings and their related codes

被引:0
|
作者
Chen, Jingyuan [1 ]
Ji, Lijun [2 ]
机构
[1] Xinyang Normal Univ, Coll Math & Stat, Xinyang 464000, Peoples R China
[2] Soochow Univ, Dept Math, Suzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
difference matrix; difference packing; optical orthogonal signature pattern code; relative difference family; strong difference family; SIGNATURE PATTERN CODES; COLLISION PARAMETER 2; COMBINATORIAL CONSTRUCTIONS; STEINER; 2-DESIGNS; FAMILIES; MATRICES; DESIGNS;
D O I
10.1002/jcd.21812
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a direct construction of a ( Z p x G , { 0 } x G , 4 , 1 ) relative difference family for G is an element of { Z 6 x Z 6 , Z 2 x Z 18 , Z 6 x Z 18 , Z 2 x Z 54 } and every prime p equivalent to 3 ( mod 4 ) with p > 3. These allow us to construct an optimal ( Z 6 m x Z 6 n , 4 , 1 ) difference packing and an optimal ( Z 2 m x Z 18 n , 4 , 1 ) difference packing for every pair of positive integers ( m , n ). The corresponding optimal optical orthogonal signature pattern codes are also obtained.
引用
收藏
页码:73 / 90
页数:18
相关论文
共 50 条