A method to provide rapid in situ determination of tip radius in dynamic atomic force microscopy

被引:77
|
作者
Santos, Sergio [1 ,2 ,3 ]
Guang, Li [3 ]
Souier, Tewfik [3 ]
Gadelrab, Karim [3 ]
Chiesa, Matteo [3 ]
Thomson, Neil H. [1 ,2 ]
机构
[1] Univ Leeds, Dept Oral Biol, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[3] Masdar Inst Sci & Technol, Lab Energy & Nanosci, Abu Dhabi, U Arab Emirates
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2012年 / 83卷 / 04期
关键词
VIBRATING TIP; ENERGY-DISSIPATION; MICROLEVER SYSTEM; BEHAVIOR; CONTACT; CALIBRATION; CONTRAST;
D O I
10.1063/1.4704376
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We provide a method to characterize the tip radius of an atomic force microscopy in situ by monitoring the dynamics of the cantilever in ambient conditions. The key concept is that the value of free amplitude for which transitions from the attractive to repulsive force regimes are observed, strongly depends on the curvature of the tip. In practice, the smaller the value of free amplitude required to observe a transition, the sharper the tip. This general behavior is remarkably independent of the properties of the sample and cantilever characteristics and shows the strong dependence of the transitions on the tip radius. The main advantage of this method is rapid in situ characterization. Rapid in situ characterization enables one to continuously monitor the tip size during experiments. Further, we show how to reproducibly shape the tip from a given initial size to any chosen larger size. This approach combined with the in situ tip size monitoring enables quantitative comparison of materials measurements between samples. These methods are set to allow quantitative data acquisition and make direct data comparison readily available in the community. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704376]
引用
收藏
页数:11
相关论文
共 50 条
  • [31] A NOVEL ZNO WHISKER TIP FOR ATOMIC FORCE MICROSCOPY
    KADO, H
    YOKOYAMA, K
    TOHDA, T
    ULTRAMICROSCOPY, 1992, 42 : 1659 - 1663
  • [32] Contrast artifacts in tapping tip atomic force microscopy
    A. Kühle
    A.H. Sorensen
    J.B. Zandbergen
    J. Bohr
    Applied Physics A, 1998, 66 : S329 - S332
  • [33] Characterizing Atomic Force Microscopy Tip Shape in Use
    Wang, Chunmei
    Itoh, Hiroshi
    Sun, Jielin
    Hu, Jun
    Shen, Dianhong
    Ichimura, Shingo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2009, 9 (02) : 803 - 808
  • [34] Contrast artifacts in tapping tip atomic force microscopy
    Kuhle, A
    Sorensen, AH
    Zandbergen, JB
    Bohr, J
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 66 (Suppl 1): : S329 - S332
  • [35] Dynamic atomic force microscopy methods
    García, R
    Pérez, R
    SURFACE SCIENCE REPORTS, 2002, 47 (6-8) : 197 - 301
  • [36] Inverse calculation of the tip-sample interaction force in atomic force microscopy by the conjugate gradient method
    Chang, WJ
    Hsu, JC
    Lai, TH
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2004, 37 (07) : 1123 - 1126
  • [37] The Determination of the Effective Radius of the Tip of the Probe of an Atomic Force Microscope Using Monodispersed Silicon Oxide Nanoparticles
    Efimov, A. A.
    Ivanov, V. V.
    Volkov, I. A.
    Lizunova, A. A.
    Lisovskii, S. V.
    Ermakova, M. A.
    MEASUREMENT TECHNIQUES, 2014, 56 (12) : 1343 - 1346
  • [38] DIRECT OBSERVATION OF THE ATOMIC-FORCE MICROSCOPY TIP USING INVERSE ATOMIC-FORCE MICROSCOPY IMAGING
    MONTELIUS, L
    TEGENFELDT, JO
    VANHEEREN, P
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1994, 12 (03): : 2222 - 2226
  • [39] The Determination of the Effective Radius of the Tip of the Probe of an Atomic Force Microscope Using Monodispersed Silicon Oxide Nanoparticles
    A. A. Efimov
    V. V. Ivanov
    I. A. Volkov
    A. A. Lizunova
    S. V. Lisovskii
    M. A. Ermakova
    Measurement Techniques, 2014, 56 : 1343 - 1346
  • [40] Chaos in dynamic atomic force microscopy
    Jamitzky, F
    Stark, M
    Bunk, W
    Heckl, WM
    Stark, RW
    NANOTECHNOLOGY, 2006, 17 (07) : S213 - S220