Brownian Motion Model With Stochastic Parameters For Asset Prices

被引:0
|
作者
Ching, Soo Huei [1 ]
Hin, Pooi Ah [1 ]
机构
[1] Sunway Univ, Sch Business, Petaling Jaya 46150, Selangor, Malaysia
关键词
Brownian motion model; drift; volatility;
D O I
10.1063/1.4823962
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Brownian motion model may not be a completely realistic model for asset prices because in real asset prices the drift mu and volatility sigma may change over time. Presently we consider a model in which the parameter x = (mu,sigma) is such that its value x (t + Delta t) at a short time Delta t ahead of the present time t depends on the value of the asset price at time t + Delta t as well as the present parameter value x(t) and m(-1) other parameter values before time t via a conditional distribution. The Malaysian stock prices are used to compare the performance of the Brownian motion model with fixed parameter with that of the model with stochastic parameter.
引用
收藏
页码:485 / 489
页数:5
相关论文
共 50 条
  • [41] Effect of stochastic resetting on Brownian motion with stochastic diffusion coefficient
    Santra, Ion
    Basu, Urna
    Sabhapandit, Sanjib
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (41)
  • [42] Liquidity and asset prices in a monetary model with OTC asset markets
    Mattesini, Fabrizio
    Nosal, Ed
    JOURNAL OF ECONOMIC THEORY, 2016, 164 : 187 - 217
  • [43] Active Brownian motion - Stochastic dynamics of swarms
    Ebeling, W
    Erdmann, U
    Complexity, Metastability and Nonextensivity, 2005, 26 : 277 - 286
  • [44] Stochastic integration with respect to fractional Brownian motion
    Carmona, P
    Coutin, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (03): : 231 - 236
  • [45] BROWNIAN-MOTION IN A WEAK STOCHASTIC FIELD
    LEVICH, E
    PISMEN, LM
    CHEMICAL PHYSICS LETTERS, 1976, 40 (02) : 243 - 246
  • [46] Stochastic evolution equations with fractional Brownian motion
    S. Tindel
    C.A. Tudor
    F. Viens
    Probability Theory and Related Fields, 2003, 127 : 186 - 204
  • [47] Stochastic evolution equations with fractional Brownian motion
    Tindel, S
    Tudor, CA
    Viens, E
    PROBABILITY THEORY AND RELATED FIELDS, 2003, 127 (02) : 186 - 204
  • [48] Stochastic fluctuations and Brownian motion detection of gravitons
    Moffat, J. W.
    EUROPEAN PHYSICAL JOURNAL C, 2025, 85 (02):
  • [49] BROWNIAN MOTION OF HARMONIC OSCILLATOR WITH STOCHASTIC FREQUENCY
    BOURRET, RC
    FRISCH, U
    POUQUET, A
    PHYSICA, 1973, 65 (02): : 303 - 320
  • [50] Stochastic integration with respect to fractional Brownian motion
    Carmona, P
    Coutin, L
    Montseny, G
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (01): : 27 - 68