Stochastic integration with respect to fractional Brownian motion

被引:11
|
作者
Carmona, P [1 ]
Coutin, L [1 ]
机构
[1] Univ Toulouse 3, Lab Stat & Probabil, F-31062 Toulouse 4, France
关键词
D O I
10.1016/S0764-4442(00)00134-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to construct a stochastic integral with respect to fractional Brownian motion W-H, for every value of the Hurst index H is an element of (0, 1), as the limit of integrals with respect to semimartingales approximating W-H. We relate this construction to former integration theory (pathwise and stochastic), and in particular we give, for H > 1/4 a precise interpretation of Privault's Ito formula [12]. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:231 / 236
页数:6
相关论文
共 50 条
  • [1] Stochastic integration with respect to fractional Brownian motion
    Carmona, P
    Coutin, L
    Montseny, G
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (01): : 27 - 68
  • [2] Stochastic integration with respect to multifractional Brownian motion via tangent fractional Brownian motions
    Lebovits, Joachim
    Vehel, Jacques Levy
    Herbin, Erick
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) : 678 - 708
  • [3] Integration with Respect to the Hermitian Fractional Brownian Motion
    Deya, Aurelien
    JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (01) : 295 - 318
  • [4] Integration with Respect to the Hermitian Fractional Brownian Motion
    Aurélien Deya
    Journal of Theoretical Probability, 2020, 33 : 295 - 318
  • [5] Wiener integration with respect to fractional brownian motion
    Mishura, Yuliya S.
    STOCHASTIC CALCULUS FOR FRACTIONAL BROWNIAN MOTION AND RELATED PROCESSES, 2008, 1929 : 1 - +
  • [6] A NEW APPROACH TO STOCHASTIC INTEGRATION WITH RESPECT TO FRACTIONAL BROWNIAN MOTION FOR NO ADAPTED PROCESSES
    Khalida, Bachir Cherif
    Abdeldjebbar, Kandouci
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2021, 16 (04): : 321 - 337
  • [7] Stochastic integration with respect to q Brownian motion
    Donati-Martin, C
    PROBABILITY THEORY AND RELATED FIELDS, 2003, 125 (01) : 77 - 95
  • [8] Stochastic integration with respect to q Brownian motion
    C. Donati-Martin
    Probability Theory and Related Fields, 2003, 125 : 77 - 95
  • [9] An Introduction to (Stochastic) Calculus with Respect to Fractional Brownian Motion
    Coutin, Laure
    SEMINAIRE DE PROBABILITES XL, 2007, 1899 : 3 - 65
  • [10] Covariance of stochastic integrals with respect to fractional Brownian motion
    Maayan, Yohai
    Mayer-Wolf, Eddy
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (05) : 1635 - 1651