Stochastic integration with respect to fractional Brownian motion

被引:11
|
作者
Carmona, P [1 ]
Coutin, L [1 ]
机构
[1] Univ Toulouse 3, Lab Stat & Probabil, F-31062 Toulouse 4, France
关键词
D O I
10.1016/S0764-4442(00)00134-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to construct a stochastic integral with respect to fractional Brownian motion W-H, for every value of the Hurst index H is an element of (0, 1), as the limit of integrals with respect to semimartingales approximating W-H. We relate this construction to former integration theory (pathwise and stochastic), and in particular we give, for H > 1/4 a precise interpretation of Privault's Ito formula [12]. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:231 / 236
页数:6
相关论文
共 50 条