Let {Bt,t∈[0,1]} be a fractional Brownian motion with Hurst parameter H > 1/2. Using the techniques of the Malliavin calculus we show that the trajectories of the indefinite divergence integral ∫t0usδBs belong to the Besov space ℬp,qα for all \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$q \geqslant 1,\frac{1}{p} < \alpha < H$$
\end{document}, provided the integrand u belongs to the space \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathbb{L}^{p,1} $$
\end{document}. Moreover, if u is bounded and belongs to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathbb{L}^{\delta ,2} $$
\end{document} for some even integer p≥2 and for some δ large enough, then the trajectories of the indefinite divergence integral ∫t0usδBs belong to the Besov space ℬp,∞H.
机构:
Natl Taras Shevchenko Univ Kyiv, Fac Mech & Math, Dept Probabil Theory Stat & Actuarial Math, UA-01601 Kiev, UkraineNatl Taras Shevchenko Univ Kyiv, Fac Mech & Math, Dept Probabil Theory Stat & Actuarial Math, UA-01601 Kiev, Ukraine
Mishura, Yu. S.
Posashkova, S. V.
论文数: 0|引用数: 0|
h-index: 0|
机构:
Natl Taras Shevchenko Univ Kyiv, Fac Mech & Math, Dept Probabil Theory Stat & Actuarial Math, UA-01601 Kiev, UkraineNatl Taras Shevchenko Univ Kyiv, Fac Mech & Math, Dept Probabil Theory Stat & Actuarial Math, UA-01601 Kiev, Ukraine