Besov Regularity of Stochastic Integrals with Respect to the Fractional Brownian Motion with Parameter H > 1/2

被引:0
|
作者
David Nualart
Youssef Ouknine
机构
[1] Universitat de Barcelona,Facultat de Matemàtiques
[2] Université Cadi Ayyad,Faculté des Sciences Semlalia, Département de Mathématiques
来源
关键词
fractional Brownian motion; stochastic integrals; Malliavin calculus;
D O I
暂无
中图分类号
学科分类号
摘要
Let {Bt,t∈[0,1]} be a fractional Brownian motion with Hurst parameter H > 1/2. Using the techniques of the Malliavin calculus we show that the trajectories of the indefinite divergence integral ∫t0usδBs belong to the Besov space ℬp,qα for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$q \geqslant 1,\frac{1}{p} < \alpha < H$$ \end{document}, provided the integrand u belongs to the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{L}^{p,1} $$ \end{document}. Moreover, if u is bounded and belongs to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{L}^{\delta ,2} $$ \end{document} for some even integer p≥2 and for some δ large enough, then the trajectories of the indefinite divergence integral ∫t0usδBs belong to the Besov space ℬp,∞H.
引用
收藏
页码:451 / 470
页数:19
相关论文
共 50 条