Stochastic volatility and fractional Brownian motion

被引:19
|
作者
Gloter, A
Hoffmann, M
机构
[1] CNRS, Lab Anal & Math Appl, UMR 8095, F-77454 Marne La Vallee 2, France
[2] GRAPE, CNRS, UMR 5113, F-33608 Pessac, France
[3] Univ Bordeaux 4, F-33608 Pessac, France
关键词
stochastic volatility models; discrete samplings; high-frequency data; fractional Brownian motion; contrast estimators;
D O I
10.1016/j.spa.2004.03.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We observe (Y-1) at times i/n, i = 0,..., n, in the parametric stochastic volatility model d Y-t = Phi(theta,W-t(H)) dW(t), where (W-t) is a Brownian motion, independent of the fractional Brownian motion (W-t(H)) with Hurst parameter H greater than or equal to 1/2. The sample size n increases not because of a longer observation period, but rather, because of more frequent observations. We prove that the unusual rate n(-1/(4H+2)) is asymptotically optimal for estimating the one-dimensional parameter theta, and we construct a contrast estimator based on an approximation of a suitably normalized quadratic variation that achieves the optimal rate. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:143 / 172
页数:30
相关论文
共 50 条
  • [1] Stochastic Volatility and Multifractional Brownian Motion
    Ayache, Antoine
    Peng, Qidi
    STOCHASTIC DIFFERENTIAL EQUATIONS AND PROCESSES, 2012, 7 : 210 - 236
  • [2] A GEOMETRIC BROWNIAN MOTION MODEL WITH COMPOUND POISSON PROCESS AND FRACTIONAL STOCHASTIC VOLATILITY
    Intarasit, A.
    Sattayatham, P.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2010, 16 (01) : 25 - 47
  • [3] Stochastic volatility models with volatility driven by fractional Brownian motions
    Duncan, T. E.
    Jakubowski, J.
    Pasik-Duncan, B.
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2015, 15 (01) : 47 - 55
  • [4] Stochastic analysis of the fractional Brownian motion
    Decreusefond, L
    Üstünel, AS
    POTENTIAL ANALYSIS, 1999, 10 (02) : 177 - 214
  • [5] Stochastic thermodynamics of fractional Brownian motion
    Khadem, S. Mohsen J.
    Klages, Rainer
    Klapp, Sabine H. L.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [6] Stochastic controls of fractional Brownian motion
    Hamed, Ikram
    Chala, Adel
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2024, 32 (01) : 27 - 39
  • [7] Stochastic Analysis of the Fractional Brownian Motion
    L. Decreusefond
    A.S. üstünel
    Potential Analysis, 1999, 10 : 177 - 214
  • [8] Stochastic averaging for stochastic differential equations driven by fractional Brownian motion and standard Brownian motion
    Pei, Bin
    Xu, Yong
    Wu, Jiang-Lun
    APPLIED MATHEMATICS LETTERS, 2020, 100
  • [9] Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion
    Guerra, Joao
    Nualart, David
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2008, 26 (05) : 1053 - 1075
  • [10] Stochastic integration with respect to fractional Brownian motion
    Carmona, P
    Coutin, L
    Montseny, G
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (01): : 27 - 68