Stochastic volatility and fractional Brownian motion

被引:19
|
作者
Gloter, A
Hoffmann, M
机构
[1] CNRS, Lab Anal & Math Appl, UMR 8095, F-77454 Marne La Vallee 2, France
[2] GRAPE, CNRS, UMR 5113, F-33608 Pessac, France
[3] Univ Bordeaux 4, F-33608 Pessac, France
关键词
stochastic volatility models; discrete samplings; high-frequency data; fractional Brownian motion; contrast estimators;
D O I
10.1016/j.spa.2004.03.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We observe (Y-1) at times i/n, i = 0,..., n, in the parametric stochastic volatility model d Y-t = Phi(theta,W-t(H)) dW(t), where (W-t) is a Brownian motion, independent of the fractional Brownian motion (W-t(H)) with Hurst parameter H greater than or equal to 1/2. The sample size n increases not because of a longer observation period, but rather, because of more frequent observations. We prove that the unusual rate n(-1/(4H+2)) is asymptotically optimal for estimating the one-dimensional parameter theta, and we construct a contrast estimator based on an approximation of a suitably normalized quadratic variation that achieves the optimal rate. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:143 / 172
页数:30
相关论文
共 50 条