Stochastic integration with respect to q Brownian motion

被引:22
|
作者
Donati-Martin, C [1 ]
机构
[1] Univ Toulouse 3, Lab Stat & Probabil, F-31062 Toulouse 04, France
关键词
Brownian Motion; Stochastic Integration;
D O I
10.1007/s00440-002-0224-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a stochastic integration with respect to a q-Brownian motion (for -1 < q < 1), i.e. a non commutative process X, = a, + a(t)* where the operator at and its adjoint fulfill the q commutation relation a(s)a(t)* - qa(t)*a(s) = (S boolean AND t) 1; under the vacuum state expectation. We show that this process enjoys a predictable representation type property.
引用
收藏
页码:77 / 95
页数:19
相关论文
共 50 条
  • [1] Stochastic integration with respect to q Brownian motion
    C. Donati-Martin
    Probability Theory and Related Fields, 2003, 125 : 77 - 95
  • [2] Stochastic integration with respect to fractional Brownian motion
    Carmona, P
    Coutin, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (03): : 231 - 236
  • [3] Stochastic integration with respect to fractional Brownian motion
    Carmona, P
    Coutin, L
    Montseny, G
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (01): : 27 - 68
  • [4] On integration with respect to the q-Brownian motion
    Bryc, Wlodek
    STATISTICS & PROBABILITY LETTERS, 2014, 94 : 257 - 266
  • [5] On stochastic calculus with respect to q-Brownian motion
    Deya, Aurelien
    Schott, Rene
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (04) : 1047 - 1075
  • [6] Stochastic integration with respect to multifractional Brownian motion via tangent fractional Brownian motions
    Lebovits, Joachim
    Vehel, Jacques Levy
    Herbin, Erick
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) : 678 - 708
  • [7] A NEW APPROACH TO STOCHASTIC INTEGRATION WITH RESPECT TO FRACTIONAL BROWNIAN MOTION FOR NO ADAPTED PROCESSES
    Khalida, Bachir Cherif
    Abdeldjebbar, Kandouci
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2021, 16 (04): : 321 - 337
  • [8] Integration with Respect to the Hermitian Fractional Brownian Motion
    Deya, Aurelien
    JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (01) : 295 - 318
  • [9] Integration with Respect to the Hermitian Fractional Brownian Motion
    Aurélien Deya
    Journal of Theoretical Probability, 2020, 33 : 295 - 318
  • [10] Wiener integration with respect to fractional brownian motion
    Mishura, Yuliya S.
    STOCHASTIC CALCULUS FOR FRACTIONAL BROWNIAN MOTION AND RELATED PROCESSES, 2008, 1929 : 1 - +