Brownian Motion Model With Stochastic Parameters For Asset Prices

被引:0
|
作者
Ching, Soo Huei [1 ]
Hin, Pooi Ah [1 ]
机构
[1] Sunway Univ, Sch Business, Petaling Jaya 46150, Selangor, Malaysia
关键词
Brownian motion model; drift; volatility;
D O I
10.1063/1.4823962
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Brownian motion model may not be a completely realistic model for asset prices because in real asset prices the drift mu and volatility sigma may change over time. Presently we consider a model in which the parameter x = (mu,sigma) is such that its value x (t + Delta t) at a short time Delta t ahead of the present time t depends on the value of the asset price at time t + Delta t as well as the present parameter value x(t) and m(-1) other parameter values before time t via a conditional distribution. The Malaysian stock prices are used to compare the performance of the Brownian motion model with fixed parameter with that of the model with stochastic parameter.
引用
收藏
页码:485 / 489
页数:5
相关论文
共 50 条
  • [21] Stochastic analysis of the fractional Brownian motion
    Decreusefond, L
    Üstünel, AS
    POTENTIAL ANALYSIS, 1999, 10 (02) : 177 - 214
  • [22] Brownian Motion and Stochastic Differential Equations
    Maslowski, Bohdan
    6TH CONFERENCE ON MATHEMATICS AND PHYSICS AT TECHNICAL UNIVERSITIES, PTS 1 AND 2, PROCEEDINGS, 2009, : 17 - 35
  • [23] Stochastic thermodynamics of fractional Brownian motion
    Khadem, S. Mohsen J.
    Klages, Rainer
    Klapp, Sabine H. L.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [24] On the regularity of stochastic currents, fractional Brownian motion and applications to a turbulence model
    Flandoli, Franco
    Gubinelli, Massimiliano
    Russo, Francesco
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (02): : 545 - 576
  • [25] Stochastic controls of fractional Brownian motion
    Hamed, Ikram
    Chala, Adel
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2024, 32 (01) : 27 - 39
  • [26] Stochastic resetting in underdamped Brownian motion
    Gupta, Deepak
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [27] Stochastic Volatility and Multifractional Brownian Motion
    Ayache, Antoine
    Peng, Qidi
    STOCHASTIC DIFFERENTIAL EQUATIONS AND PROCESSES, 2012, 7 : 210 - 236
  • [28] Stochastic Analysis of the Fractional Brownian Motion
    L. Decreusefond
    A.S. üstünel
    Potential Analysis, 1999, 10 : 177 - 214
  • [29] The Brownian motion stochastic Schrodinger equation
    Strunz, WT
    CHEMICAL PHYSICS, 2001, 268 (1-3) : 237 - 248
  • [30] Stochastic thermodynamics of relativistic Brownian motion
    Pal, P. S.
    Deffner, Sebastian
    NEW JOURNAL OF PHYSICS, 2020, 22 (07):