Brownian Motion Model With Stochastic Parameters For Asset Prices

被引:0
|
作者
Ching, Soo Huei [1 ]
Hin, Pooi Ah [1 ]
机构
[1] Sunway Univ, Sch Business, Petaling Jaya 46150, Selangor, Malaysia
关键词
Brownian motion model; drift; volatility;
D O I
10.1063/1.4823962
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Brownian motion model may not be a completely realistic model for asset prices because in real asset prices the drift mu and volatility sigma may change over time. Presently we consider a model in which the parameter x = (mu,sigma) is such that its value x (t + Delta t) at a short time Delta t ahead of the present time t depends on the value of the asset price at time t + Delta t as well as the present parameter value x(t) and m(-1) other parameter values before time t via a conditional distribution. The Malaysian stock prices are used to compare the performance of the Brownian motion model with fixed parameter with that of the model with stochastic parameter.
引用
收藏
页码:485 / 489
页数:5
相关论文
共 50 条
  • [31] Stochastic volatility and fractional Brownian motion
    Gloter, A
    Hoffmann, M
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 113 (01) : 143 - 172
  • [32] Comparative statics under κ-ambiguity for log-Brownian asset prices
    Tian, Dejian
    Tian, Weidong
    INTERNATIONAL JOURNAL OF ECONOMIC THEORY, 2016, 12 (04) : 361 - 378
  • [33] Asset prices and economic fluctuations: The implications of stochastic volatility
    Chen, Junping
    Xiong, Xiong
    Zhu, Jie
    Zhu, Xiaoneng
    ECONOMIC MODELLING, 2017, 64 : 128 - 140
  • [34] Fractional Brownian Motion in OHLC Crude Oil Prices
    Bohdalova, Maria
    Gregus, Michal
    ADVANCES IN TIME SERIES ANALYSIS AND FORECASTING, 2017, : 77 - 87
  • [35] Model Uncertainty Effect on Asset Prices
    Jiang, Junya
    Tian, Weidong
    INTERNATIONAL REVIEW OF FINANCE, 2017, 17 (02) : 205 - 233
  • [36] Model Complexity, Expectations, and Asset Prices
    Molavi, Pooya
    Tahbaz-Salehi, Alireza
    Vedolin, Andrea
    REVIEW OF ECONOMIC STUDIES, 2023, 91 (04): : 2462 - 2507
  • [37] MODEL CALCULATION OF BROWNIAN-MOTION PARAMETERS AT A METAL-SURFACE
    SCHAICH, WL
    SURFACE SCIENCE, 1975, 49 (01) : 221 - 235
  • [38] Analysis of a stochastic SEIS epidemic model with the standard Brownian motion and Levy jump
    Hammouch, Zakia
    Hama, Mudhafar F.
    Rasul, Rando R. Q.
    Rasul, Kawa A. H.
    Danane, Jaouad
    RESULTS IN PHYSICS, 2022, 37
  • [39] Parameter estimation in the stochastic SIR model via scaled geometric Brownian motion
    Sanchez-Monroy, J. A.
    Riascos-Ochoa, Javier
    Bustos, Abel
    CHAOS SOLITONS & FRACTALS, 2024, 189
  • [40] A GEOMETRIC BROWNIAN MOTION MODEL WITH COMPOUND POISSON PROCESS AND FRACTIONAL STOCHASTIC VOLATILITY
    Intarasit, A.
    Sattayatham, P.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2010, 16 (01) : 25 - 47