Algorithm to compute abelian subalgebras and ideals in Malcev algebras

被引:1
|
作者
Ceballos, M. [1 ]
Nunez, J. [1 ]
Tenorio, A. F. [2 ]
机构
[1] Univ Seville, Fac Matemat, Dept Geometria & Topol, C Tarfia S-N, E-41012 Seville, Spain
[2] Univ Pablo de Olavide, Escuela Politecn Super, Dept Econ Metodos Cuantitat & Hist Econ, Ctra Utrera Km 1, Seville 41013, Spain
关键词
Malcev algebra; abelian subalgebra; abelian ideal; invariant; algorithm; DIMENSION;
D O I
10.1002/mma.3940
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce an algorithmic procedure that computes abelian subalgebras and ideals of a given finite-dimensional Malcev algebra. All the computations are performed by using the non-zero brackets in the law of the algebra as input. Additionally, the algorithm also computes the and invariants of these algebras, and as a supporting output, a list of abelian ideals and subalgebras of maximal dimension is returned too. To implement this algorithm, we have used the symbolic computation package MAPLE 12, performing a brief computational and statistical study for it and its implementation. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:4892 / 4900
页数:9
相关论文
共 50 条
  • [11] CARTAN SUBALGEBRAS OF A MALCEV ALGEBRA AND ITS IDEALS
    ELMALEK, AA
    COMMUNICATIONS IN ALGEBRA, 1983, 11 (20) : 2333 - 2347
  • [12] Abelian subalgebras and ideals of maximal dimension in supersolvable and nilpotent lie algebras
    Towers, David A.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (13): : 2551 - 2568
  • [13] Computational algorithm for obtaining Abelian subalgebras in Lie Algebras
    Ceballos, Manuel
    Núñez, Juan
    Tenorio, Angel F.
    World Academy of Science, Engineering and Technology, 2009, 34 : 1135 - 1139
  • [14] ON MAXIMAL SUBALGEBRAS OF CENTRAL SIMPLE MALCEV ALGEBRAS
    ELDUQUE, A
    JOURNAL OF ALGEBRA, 1986, 103 (01) : 216 - 227
  • [15] Computational algorithm for obtaining abelian subalgebras in Lie algebras
    Ceballos, Manuel
    Núñez, Juan
    Tenorio, Ángel F.
    World Academy of Science, Engineering and Technology, 2009, 58 : 1135 - 1139
  • [16] Algorithm to compute the maximal abelian dimension of Lie algebras
    M. Ceballos
    J. Núñez
    A. F. Tenorio
    Computing, 2009, 84 : 231 - 239
  • [17] Algorithm to compute the maximal abelian dimension of Lie algebras
    Ceballos, M.
    Nunez, J.
    Tenorio, A. F.
    COMPUTING, 2009, 84 (3-4) : 231 - 239
  • [18] IDEALS IN SUBALGEBRAS OF GROUP ALGEBRAS
    YAP, LYH
    STUDIA MATHEMATICA, 1970, 35 (02) : 165 - &
  • [19] Abelian subalgebras on Lie algebras
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2015, 17 (04)
  • [20] Abelian ideals and the variety of Lagrangian subalgebras
    Evens, Sam
    Li, Yu
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2025, 229 (01)