Algorithm to compute abelian subalgebras and ideals in Malcev algebras

被引:1
|
作者
Ceballos, M. [1 ]
Nunez, J. [1 ]
Tenorio, A. F. [2 ]
机构
[1] Univ Seville, Fac Matemat, Dept Geometria & Topol, C Tarfia S-N, E-41012 Seville, Spain
[2] Univ Pablo de Olavide, Escuela Politecn Super, Dept Econ Metodos Cuantitat & Hist Econ, Ctra Utrera Km 1, Seville 41013, Spain
关键词
Malcev algebra; abelian subalgebra; abelian ideal; invariant; algorithm; DIMENSION;
D O I
10.1002/mma.3940
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce an algorithmic procedure that computes abelian subalgebras and ideals of a given finite-dimensional Malcev algebra. All the computations are performed by using the non-zero brackets in the law of the algebra as input. Additionally, the algorithm also computes the and invariants of these algebras, and as a supporting output, a list of abelian ideals and subalgebras of maximal dimension is returned too. To implement this algorithm, we have used the symbolic computation package MAPLE 12, performing a brief computational and statistical study for it and its implementation. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:4892 / 4900
页数:9
相关论文
共 50 条