Algorithm to compute abelian subalgebras and ideals in Malcev algebras

被引:1
|
作者
Ceballos, M. [1 ]
Nunez, J. [1 ]
Tenorio, A. F. [2 ]
机构
[1] Univ Seville, Fac Matemat, Dept Geometria & Topol, C Tarfia S-N, E-41012 Seville, Spain
[2] Univ Pablo de Olavide, Escuela Politecn Super, Dept Econ Metodos Cuantitat & Hist Econ, Ctra Utrera Km 1, Seville 41013, Spain
关键词
Malcev algebra; abelian subalgebra; abelian ideal; invariant; algorithm; DIMENSION;
D O I
10.1002/mma.3940
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce an algorithmic procedure that computes abelian subalgebras and ideals of a given finite-dimensional Malcev algebra. All the computations are performed by using the non-zero brackets in the law of the algebra as input. Additionally, the algorithm also computes the and invariants of these algebras, and as a supporting output, a list of abelian ideals and subalgebras of maximal dimension is returned too. To implement this algorithm, we have used the symbolic computation package MAPLE 12, performing a brief computational and statistical study for it and its implementation. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:4892 / 4900
页数:9
相关论文
共 50 条
  • [21] ON MALCEV ALGEBRAS IN WHICH ALL SUBIDEALS ARE IDEALS
    ELDUQUE, A
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1985, 101 : 353 - 363
  • [22] Ideals and hereditary subalgebras in operator algebras
    Almus, Melahat
    Blecher, David P.
    Read, Charles John
    STUDIA MATHEMATICA, 2012, 212 (01) : 65 - 93
  • [24] The Leibniz algebras whose subalgebras are ideals
    Kurdachenko, Leonid A.
    Semko, Nikolai N.
    Subbotin, Igor Ya.
    OPEN MATHEMATICS, 2017, 15 : 92 - 100
  • [25] Maximal abelian subalgebras of Banach algebras
    Dales, H. G.
    Pham, H. L.
    Zelazko, W.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (06) : 1879 - 1897
  • [26] THE BRUHAT ORDER ON ABELIAN IDEALS OF BOREL SUBALGEBRAS
    Gandini, Jacopo
    Maffei, Andrea
    Frajria, Pierluigi Moseneder
    Papi, Paolo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (10) : 6999 - 7018
  • [27] Abelian Ideals with Given Dimension in Borel Subalgebras
    Luo, Li
    ALGEBRA COLLOQUIUM, 2012, 19 (04) : 755 - 770
  • [28] Fuzzy Subalgebras and Ideals With Thresholds of Hilbert Algebras
    Iampan, Aiyared
    Jayaraman, P.
    Sudha, S. D.
    Rajesh, N.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2022, 20
  • [29] FALLING SUBALGEBRAS AND IDEALS IN BH-ALGEBRAS
    Kim, Eun Mi
    Ahn, Sun Shin
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2012, 19 (03): : 251 - 262
  • [30] A characterisation of Lie algebras using ideals and subalgebras
    Dotsenko, Vladimir
    Garcia-Martinez, Xabier
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (07) : 2408 - 2423