Computational algorithm for obtaining abelian subalgebras in Lie algebras

被引:0
|
作者
Ceballos, Manuel [1 ]
Núñez, Juan [1 ]
Tenorio, Ángel F. [2 ]
机构
[1] Department of Geometry and Topology, Faculty of Mathematics, University of Seville, Aptdo. 1160, 41080-Seville, Spain
[2] Department of Economics, Quantitative Methods and Economic History, Polytechnical School, Pablo de Olavide University, Ctra. Utrera Km. 1, 41013-Seville, Spain
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1135 / 1139
相关论文
共 50 条
  • [1] Computational algorithm for obtaining Abelian subalgebras in Lie Algebras
    Ceballos, Manuel
    Núñez, Juan
    Tenorio, Angel F.
    World Academy of Science, Engineering and Technology, 2009, 34 : 1135 - 1139
  • [2] Abelian subalgebras on Lie algebras
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2015, 17 (04)
  • [3] On 3-Lie algebras with abelian ideals and subalgebras
    Bai, RuiPu
    Zhang, Lihong
    Wu, Yong
    Li, Zhenheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2072 - 2082
  • [4] MAXIMAL ABELIAN SUBALGEBRAS OF PSEUDOORTHOGONAL LIE-ALGEBRAS
    HUSSIN, V
    WINTERNITZ, P
    ZASSENHAUS, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 173 : 125 - 163
  • [5] On Lie algebras all nilpotent subalgebras of which are Abelian
    Dallmer, E
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (08) : 4151 - 4156
  • [6] Abelian subalgebras in some particular types of Lie algebras
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E401 - E408
  • [7] MAXIMAL ABELIAN SUBALGEBRAS OF PSEUDOUNITARY LIE-ALGEBRAS
    DELOLMO, MA
    RODRIGUEZ, MA
    WINTERNITZ, P
    ZASSENHAUS, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 135 : 79 - 151
  • [8] Complex symplectic Lie algebras with large Abelian subalgebras
    Bazzoni, Giovanni
    Freibert, Marco
    Latorre, Adela
    Tardini, Nicoletta
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 677 : 254 - 305
  • [9] On abelian subalgebras and ideals of maximal dimension in supersolvable Lie algebras
    Ceballos, Manuel
    Towers, David A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (03) : 497 - 503
  • [10] MAXIMAL ABELIAN SUBALGEBRAS OF COMPLEX ORTHOGONAL LIE-ALGEBRAS
    HUSSIN, V
    WINTERNITZ, P
    ZASSENHAUS, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 141 : 183 - 220