Spatial pattern formation in the Keller-Segel Model with a logistic source

被引:8
|
作者
Fu, Shengmao [1 ]
Liu, Ji [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
关键词
Keller-Segel model; Logistic source; Pattern formation; Nonlinear dynamics; CHEMOTAXIS MODEL; DYNAMICS; GROWTH;
D O I
10.1016/j.camwa.2013.05.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a Neumann boundary value problem in a d-dimensional box T-d = (0, pi)(d) (d = 1, 2, 3) for the chemotaxis-diffusion-growth model {U-t = del(D-u del U - chi U del V) + rU(1 - U K), V-t = D-nu del V-7 + alpha U - beta V, (star) which describes the movement of cells in response to the presence of a chemical signal substance. It is proved that given any general perturbation of magnitude delta, its nonlinear evolution is dominated by the corresponding linear dynamics along a finite number of fixed fastest growing modes, over a time period of the order In 1/delta. Each initial perturbation certainly can behave drastically differently from another, which gives rise to the richness of patterns. Our results provide a mathematical characterization for the early-stage pattern formation in the Keller-Segel model (star). (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:403 / 417
页数:15
相关论文
共 50 条
  • [11] Traveling wave solutions of a singular Keller-Segel system with logistic source
    Li, Tong
    Wang, Zhi-An
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (08) : 8107 - 8131
  • [12] Pushed and pulled fronts in a logistic Keller-Segel model with chemorepulsion*
    Avery, Montie
    Holzer, Matt
    Scheel, Arnd
    NONLINEARITY, 2025, 38 (02)
  • [13] On the minimal Keller-Segel system with logistic growth
    Myint, Aung Zaw
    Wang, Jianping
    Wang, Mingxin
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 55
  • [14] The stability of the Keller-Segel model
    Solis, FJ
    Cortés, JC
    Cardenas, OJ
    MATHEMATICAL AND COMPUTER MODELLING, 2004, 39 (9-10) : 973 - 979
  • [15] The fractional Keller-Segel model
    Escudero, Carlos
    NONLINEARITY, 2006, 19 (12) : 2909 - 2918
  • [16] PATTERN FORMATION OF THE ATTRACTION-REPULSION KELLER-SEGEL SYSTEM
    Liu, Ping
    Shi, Junping
    Wang, Zhi-An
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (10): : 2597 - 2625
  • [17] Beyond the Keller-Segel model
    Romanczuk, P.
    Erdmann, U.
    Engel, H.
    Schimansky-Geier, L.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2008, 157 : 61 - 77
  • [18] A new result for boundedness in the quasilinear parabolic-parabolic Keller-Segel model (with logistic source)
    Liu, Ling
    Zheng, Jiashan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (04) : 1208 - 1221
  • [19] Threshold for shock formation in the hyperbolic Keller-Segel model
    Lee, Yongki
    Liu, Hailiang
    APPLIED MATHEMATICS LETTERS, 2015, 50 : 56 - 63
  • [20] Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source
    Cao, Xinru
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) : 181 - 188