Spatial pattern formation in the Keller-Segel Model with a logistic source

被引:8
|
作者
Fu, Shengmao [1 ]
Liu, Ji [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
关键词
Keller-Segel model; Logistic source; Pattern formation; Nonlinear dynamics; CHEMOTAXIS MODEL; DYNAMICS; GROWTH;
D O I
10.1016/j.camwa.2013.05.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a Neumann boundary value problem in a d-dimensional box T-d = (0, pi)(d) (d = 1, 2, 3) for the chemotaxis-diffusion-growth model {U-t = del(D-u del U - chi U del V) + rU(1 - U K), V-t = D-nu del V-7 + alpha U - beta V, (star) which describes the movement of cells in response to the presence of a chemical signal substance. It is proved that given any general perturbation of magnitude delta, its nonlinear evolution is dominated by the corresponding linear dynamics along a finite number of fixed fastest growing modes, over a time period of the order In 1/delta. Each initial perturbation certainly can behave drastically differently from another, which gives rise to the richness of patterns. Our results provide a mathematical characterization for the early-stage pattern formation in the Keller-Segel model (star). (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:403 / 417
页数:15
相关论文
共 50 条
  • [41] Global boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with logistic source
    Zhang, Yinle
    Zheng, Sining
    APPLIED MATHEMATICS LETTERS, 2016, 52 : 15 - 20
  • [42] Bilinear Optimal Control of the Keller-Segel Logistic Model in 2D-Domains
    Braz e Silva, P.
    Guillen-Gonzalez, F.
    Perusato, C. F.
    Rodriguez-Bellido, M. A.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 87 (03):
  • [43] EXISTENCE OF SOLUTIONS OF THE HYPERBOLIC KELLER-SEGEL MODEL
    Perthame, Benoit
    Dalibard, Anne-Laure
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (05) : 2319 - 2335
  • [44] The existence and stability of spikes in the one-dimensional Keller-Segel model with logistic growth
    Kong, Fanze
    Wei, Juncheng
    Xu, Liangshun
    JOURNAL OF MATHEMATICAL BIOLOGY, 2023, 86 (01)
  • [45] Blowup of solutions to generalized Keller-Segel model
    Biler, Piotr
    Karch, Grzegorz
    JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (02) : 247 - 262
  • [46] ON BLOWUP DYNAMICS IN THE KELLER-SEGEL MODEL OF CHEMOTAXIS
    Dejak, S. I.
    Egli, D.
    Lushnikov, P. M.
    Sigal, I. M.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (04) : 547 - 574
  • [47] LARGE TIME BEHAVIOR IN THE LOGISTIC KELLER-SEGEL MODEL VIA MAXIMAL SOBOLEV REGULARITY
    Cao, Xinru
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (09): : 3369 - 3378
  • [48] Exact solutions of the simplified Keller-Segel model
    Cherniha, Roman
    Didovych, Maksym
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (11) : 2960 - 2971
  • [49] On convergence to equilibria for the Keller-Segel chemotaxis model
    Feireisl, Eduard
    Laurencot, Philippe
    Petzeltova, Hana
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 236 (02) : 551 - 569
  • [50] Propagation of chaos for a subcritical Keller-Segel model
    Godinho, David
    Quininao, Cristobal
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (03): : 965 - 992