Spatial pattern formation in the Keller-Segel Model with a logistic source

被引:8
|
作者
Fu, Shengmao [1 ]
Liu, Ji [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
关键词
Keller-Segel model; Logistic source; Pattern formation; Nonlinear dynamics; CHEMOTAXIS MODEL; DYNAMICS; GROWTH;
D O I
10.1016/j.camwa.2013.05.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with a Neumann boundary value problem in a d-dimensional box T-d = (0, pi)(d) (d = 1, 2, 3) for the chemotaxis-diffusion-growth model {U-t = del(D-u del U - chi U del V) + rU(1 - U K), V-t = D-nu del V-7 + alpha U - beta V, (star) which describes the movement of cells in response to the presence of a chemical signal substance. It is proved that given any general perturbation of magnitude delta, its nonlinear evolution is dominated by the corresponding linear dynamics along a finite number of fixed fastest growing modes, over a time period of the order In 1/delta. Each initial perturbation certainly can behave drastically differently from another, which gives rise to the richness of patterns. Our results provide a mathematical characterization for the early-stage pattern formation in the Keller-Segel model (star). (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:403 / 417
页数:15
相关论文
共 50 条
  • [21] Existence of multi-spikes in the Keller-Segel model with logistic growth
    Kong, Fanze
    Wei, Juncheng
    Xu, Liangshun
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2023, 33 (11): : 2227 - 2270
  • [22] Chemotactic collapse for the Keller-Segel model
    Herrero, MA
    Velazquez, JJL
    JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 35 (02) : 177 - 194
  • [23] THE SCALAR KELLER-SEGEL MODEL ON NETWORKS
    Borsche, R.
    Goettlich, S.
    Klar, A.
    Schillen, P.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (02): : 221 - 247
  • [24] STATIONARY SOLUTIONS FOR SOME SHADOW SYSTEM OF THE KELLER-SEGEL MODEL WITH LOGISTIC GROWTH
    Tsujikawa, Tohru
    Kuto, Kousuke
    Miyamoto, Yasuhito
    Izuhara, Hirofumi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2015, 8 (05): : 1023 - 1034
  • [25] Global Existence and Asymptotic Behavior of Solutions to the Hyperbolic Keller-Segel Equation with a Logistic Source
    Chae, Myeongju
    ACTA APPLICANDAE MATHEMATICAE, 2018, 158 (01) : 207 - 227
  • [26] Boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with a logistic source
    Zheng, Jiashan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (02) : 867 - 888
  • [27] Boundedness in a quasilinear fully parabolic Keller-Segel system of higher dimension with logistic source
    Yang, Cibing
    Cao, Xinru
    Jiang, Zhaoxin
    Zheng, Sining
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 585 - 591
  • [28] TRAVELING WAVE SOLUTIONS FOR FULLY PARABOLIC KELLER-SEGEL CHEMOTAXIS SYSTEMS WITH A LOGISTIC SOURCE
    Salako, Rachidi B.
    Shen, Wenxian
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [29] Instability in a generalized Keller-Segel model
    De Leenheer, Patrick
    Gopalakrishnan, Jay
    Zuhr, Erica
    JOURNAL OF BIOLOGICAL DYNAMICS, 2012, 6 (02) : 974 - 991
  • [30] Decay for a Keller-Segel Chemotaxis Model
    Payne, L. E.
    Straughan, B.
    STUDIES IN APPLIED MATHEMATICS, 2009, 123 (04) : 337 - 360