Haruspicy 2: The anisotropic generating function of self-avoiding polygons is not D-finite

被引:4
|
作者
Rechnitzer, A [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
enumeration; self-avoiding polygons; solvability; differentiably finite power series;
D O I
10.1016/j.jcta.2005.04.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the anisotropic generating function of self-avoiding polygons is not a D-finite function-proving a conjecture of Guttmann [Discrete Math. 217 (2000) 167-189] and Guttman and Enting [Phys. Rev. Lett. 76 (1996) 344-347]. This result is also generalised to self-avoiding polygons on hypercubic lattices. Using the haruspicy techniques developed in an earlier paper [Rechnitzer, Adv. Appl. Math. 30 (2003) 228-257], we are also able to prove the form of the coefficients of the anisotropic generating function, which was first conjectured in Guttman and Enting [Phys. Rev. Lett. 76 (1996) 344-347]. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:520 / 546
页数:27
相关论文
共 50 条
  • [21] Self-avoiding walks and polygons on quasiperiodic tilings
    Rogers, AN
    Richard, C
    Guttmann, AJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (24): : 6661 - 6673
  • [22] Self-avoiding walks and polygons on hyperbolic graphs
    Panagiotis, Christoforos
    JOURNAL OF GRAPH THEORY, 2024, 106 (03) : 435 - 473
  • [23] Square Lattice Self-Avoiding Walks and Polygons
    A.J. Guttmann
    A.R. Conway
    Annals of Combinatorics, 2001, 5 (3) : 319 - 345
  • [24] ESTIMATION OF NUMBER OF SELF-AVOIDING LATTICE POLYGONS
    WHITTINGTON, SG
    VALLEAU, JP
    JOURNAL OF CHEMICAL PHYSICS, 1969, 50 (11): : 4686 - +
  • [25] Self-avoiding walks and polygons on the triangular lattice
    Jensen, I
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
  • [26] Partition and generating function zeros in adsorbing self-avoiding walks
    Janse van Rensburg, E. J.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [27] On anisotropic spiral self-avoiding walks
    Brak, R
    Owczarek, AL
    Soteros, CE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (21): : 4851 - 4869
  • [28] ANISOTROPIC SPIRAL SELF-AVOIDING WALKS
    WHITTINGTON, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02): : L67 - L69
  • [29] Interacting self-avoiding walks and polygons in three dimensions
    Tesi, MC
    vanRensburg, EJJ
    Orlandini, E
    Whittington, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (10): : 2451 - 2463
  • [30] Three-dimensional self-avoiding convex polygons
    BousquetMelou, M
    Guttmann, AJ
    PHYSICAL REVIEW E, 1997, 55 (06) : R6323 - R6326