Three-dimensional self-avoiding convex polygons

被引:4
|
作者
BousquetMelou, M [1 ]
Guttmann, AJ [1 ]
机构
[1] UNIV MELBOURNE, DEPT MATH & STAT, PARKVILLE, VIC 3052, AUSTRALIA
关键词
D O I
10.1103/PhysRevE.55.R6323
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We calculate the generating function of three-dimensional self-avoiding convex polygons. This both adds to the very short list of exactly solved three-dimensional statistical mechanics systems and illuminates the properties of self-avoiding polygons, the paradigm model of ring polymers.
引用
收藏
页码:R6323 / R6326
页数:4
相关论文
共 50 条
  • [1] On three-dimensional self-avoiding walk symmetry classes
    Rechnitzer, A
    Owczarek, AL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (14): : 2685 - 2723
  • [2] Self-avoiding walk on a three-dimensional Manhattan lattice
    Fan, K
    Li, XY
    Wu, DC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (22): : 3971 - 3975
  • [3] Interacting self-avoiding walks and polygons in three dimensions
    Tesi, MC
    vanRensburg, EJJ
    Orlandini, E
    Whittington, SG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (10): : 2451 - 2463
  • [4] Interacting self-avoiding polygons
    Betz, Volker
    Schaefer, Helge
    Taggi, Lorenzo
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 1321 - 1335
  • [5] DIRECTED SELF-AVOIDING POLYGONS
    MANNA, SS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (08): : 2227 - 2231
  • [7] Monte Carlo results for three-dimensional self-avoiding walks
    Caracciolo, S
    Causo, MS
    Pelissetto, A
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 : 652 - 654
  • [8] Three-dimensional terminally attached self-avoiding walks and bridges
    Clisby, Nathan
    Conway, Andrew R.
    Guttmann, Anthony J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (01)
  • [9] Universal amplitude ratios for three-dimensional self-avoiding walks
    Chen, M
    Lin, KY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (07): : 1501 - 1508
  • [10] Conformal Invariance Predictions for the Three-Dimensional Self-Avoiding Walk
    Tom Kennedy
    Journal of Statistical Physics, 2015, 158 : 1195 - 1212