Haruspicy 2: The anisotropic generating function of self-avoiding polygons is not D-finite

被引:4
|
作者
Rechnitzer, A [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
enumeration; self-avoiding polygons; solvability; differentiably finite power series;
D O I
10.1016/j.jcta.2005.04.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the anisotropic generating function of self-avoiding polygons is not a D-finite function-proving a conjecture of Guttmann [Discrete Math. 217 (2000) 167-189] and Guttman and Enting [Phys. Rev. Lett. 76 (1996) 344-347]. This result is also generalised to self-avoiding polygons on hypercubic lattices. Using the haruspicy techniques developed in an earlier paper [Rechnitzer, Adv. Appl. Math. 30 (2003) 228-257], we are also able to prove the form of the coefficients of the anisotropic generating function, which was first conjectured in Guttman and Enting [Phys. Rev. Lett. 76 (1996) 344-347]. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:520 / 546
页数:27
相关论文
共 50 条