Haruspicy 2: The anisotropic generating function of self-avoiding polygons is not D-finite

被引:4
|
作者
Rechnitzer, A [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
enumeration; self-avoiding polygons; solvability; differentiably finite power series;
D O I
10.1016/j.jcta.2005.04.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the anisotropic generating function of self-avoiding polygons is not a D-finite function-proving a conjecture of Guttmann [Discrete Math. 217 (2000) 167-189] and Guttman and Enting [Phys. Rev. Lett. 76 (1996) 344-347]. This result is also generalised to self-avoiding polygons on hypercubic lattices. Using the haruspicy techniques developed in an earlier paper [Rechnitzer, Adv. Appl. Math. 30 (2003) 228-257], we are also able to prove the form of the coefficients of the anisotropic generating function, which was first conjectured in Guttman and Enting [Phys. Rev. Lett. 76 (1996) 344-347]. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:520 / 546
页数:27
相关论文
共 50 条
  • [41] UNIVERSAL AMPLITUDE COMBINATIONS FOR SELF-AVOIDING WALKS, POLYGONS AND TRAILS
    CARDY, JL
    GUTTMANN, AJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (11): : 2485 - 2494
  • [42] Universal amplitude combinations for self-avoiding polygons on the kagome lattice
    Lin, Keh-Ying
    Lue, Shinn-Jong
    Physica A: Statistical Mechanics and its Applications, 1999, 270 (03): : 453 - 461
  • [43] EFFECT OF ANISOTROPIC CONSTRAINTS ON SELF-AVOIDING WALKS
    MANNA, SS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (05): : L255 - L259
  • [44] NUMBER OF ANISOTROPIC SPIRAL SELF-AVOIDING LOOPS
    LIN, KY
    MA, SK
    KAO, CH
    CHIU, SH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (07): : 1881 - 1888
  • [45] ANISOTROPIC SCALING OF TETHERED SELF-AVOIDING MEMBRANES
    BOAL, D
    LEVINSON, E
    LIU, DM
    PLISCHKE, M
    PHYSICAL REVIEW A, 1989, 40 (06): : 3292 - 3300
  • [46] Quenched Averages for Self-Avoiding Walks and Polygons on Deterministic Fractals
    Deepak Sumedha
    Journal of Statistical Physics, 2006, 125 : 55 - 76
  • [47] Inversion relations, the Ising model and self-avoiding polygons.
    Guttmann, AJ
    Enting, IG
    NUCLEAR PHYSICS B, 1996, : 735 - 738
  • [48] TUNABLE FRACTAL SHAPES IN SELF-AVOIDING POLYGONS AND PLANAR VESICLES
    CAMACHO, CJ
    FISHER, ME
    PHYSICAL REVIEW LETTERS, 1990, 65 (01) : 9 - 12
  • [49] Self-avoiding walks and polygons on non-Euclidean lattices
    Swierczak, E
    Guttmann, AJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (23): : 7485 - 7500
  • [50] Knotting probability of self-avoiding polygons under a topological constraint
    Uehara, Erica
    Deguchi, Tetsuo
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (09):