Hypersurfaces in a sphere with constant mean curvature

被引:24
|
作者
Hou, ZH [1 ]
机构
[1] DALIAN UNIV TECHNOL,DEPT APPL MATH,DALIAN,PEOPLES R CHINA
关键词
D O I
10.1090/S0002-9939-97-03668-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Mn be a closed hypersurface of constant mean curvature immersed in the unit sphere Sn+1. Denote by S the square of the length of its second fundamental form. If S < 2 root n-1, M is a small hypersphere in Sn+1. We also characterize all M-n with S = 2 root n-1.
引用
收藏
页码:1193 / 1196
页数:4
相关论文
共 50 条
  • [31] Weakly stable constant mean curvature hypersurfaces
    Fu Hai-ping
    Xu Hong-wei
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2009, 24 (01): : 119 - 126
  • [32] Index growth of hypersurfaces with constant mean curvature
    Bérard, P
    de Lima, LL
    Rossman, W
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2002, 239 (01) : 99 - 115
  • [33] On constant mean curvature hypersurfaces with finite index
    Xu Cheng
    [J]. Archiv der Mathematik, 2006, 86 : 365 - 374
  • [34] Hypersurfaces of Randers Spaces with Constant Mean Curvature
    Li, Jintang
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (05): : 979 - 996
  • [35] On affine translation hypersurfaces of constant mean curvature
    Sun, HF
    Chen, C
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2004, 64 (3-4): : 381 - 390
  • [36] Constant mean curvature hypersurfaces in Riemannian manifolds
    Pacard, Frank
    [J]. RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2005, 4 : 141 - 162
  • [37] Hypersurfaces with constant mth mean curvature in the spheres
    Wei, Guoxin
    Wen, Guohua
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2016, 104 : 121 - 127
  • [38] HYPERSURFACES WITH CONSTANT EQUIAFFINE MEAN-CURVATURE
    SCHWENK, A
    SIMON, U
    [J]. ARCHIV DER MATHEMATIK, 1986, 46 (01) : 85 - 90
  • [39] STABILITY OF HYPERSURFACES WITH CONSTANT MEAN-CURVATURE
    BARBOSA, JL
    DOCARMO, M
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1984, 185 (03) : 339 - 353
  • [40] Index growth of hypersurfaces with constant mean curvature
    Pierre Bérard
    Levi Lopes de Lima
    Wayne Rossman
    [J]. Mathematische Zeitschrift, 2002, 239 : 99 - 115