Hypersurfaces of Randers Spaces with Constant Mean Curvature

被引:0
|
作者
Li, Jintang [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2017年 / 21卷 / 05期
关键词
Finsler manifolds; Randers spaces; hypersurfaces;
D O I
10.11650/tjm/7945
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let ((M) over bar (n+1), (F) over bar) be a complete simply connected Randers space with (F) over bar (x, Y) = (a) over bar (x, Y) + (b) over bar (x, Y), where (a) over bar (x, Y) = root(a) over bar ij(x)(YYj)-Y-i and (b) over bar (x, Y) = (b) over bar (i)(x)Y-i are a Riemannian metric and a 1-form on the smooth (n + 1)-dimensional manifold (M) over bar respectively. Assume the 1-form (b) over bar is parallel with respect to (a) over bar and the sectional curvature (K) over bar ((M) over bar) of (M) over bar with respect to (a) over bar satisfies delta(n) <= (K) over bar ((M) over bar) <= 1. In this paper, we study the compact hypersurface (M, F) of the Randers space ((M) over bar (n+1), (F) over bar) with constant mean curvature vertical bar H vertical bar and prove that if the norm square S of the second fundamental form of (M, F) with respect to the Finsler metric (F) over bar satisfies a certain inequality, then S = n vertical bar H vertical bar(2) and M is the unit sphere or equality holds. In that case, we describe all M that satisfy this equality, which generalizes the result of [8] from the Riemannian case to the Randers space.
引用
收藏
页码:979 / 996
页数:18
相关论文
共 50 条
  • [1] HYPERSURFACES OF RANDERS SPACES WITH POSITIVE RICCI CURVATURE
    Li, Jintang
    Luo, Miao
    [J]. COLLOQUIUM MATHEMATICUM, 2023, 172 (01) : 85 - 98
  • [2] Constant mean curvature hypersurfaces in noncompact symmetric spaces
    Lee, N
    [J]. TOHOKU MATHEMATICAL JOURNAL, 1995, 47 (04) : 499 - 508
  • [3] Constant mean curvature hypersurfaces in warped product spaces
    Alias, Luis J.
    Dajczer, Marcos
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2007, 50 : 511 - 526
  • [4] HYPERSURFACES OF RANDERS SPACES WITH POSITIVE RICCI CURVATURE
    LI, J. I. N. T. A. N. G.
    LUO, M. I. A. O.
    [J]. COLLOQUIUM MATHEMATICUM, 2022, : 85 - 97
  • [5] Geodesics in Randers spaces of constant curvature
    Robles, Colleen
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (04) : 1633 - 1651
  • [6] On Randers spaces of constant flag curvature
    Bao, D
    Robles, C
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2003, 51 (01) : 9 - 42
  • [7] Isoparametric hypersurfaces in a Randers sphere of constant flag curvature
    Ming Xu
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2018, 197 : 703 - 720
  • [8] Isoparametric hypersurfaces in a Randers sphere of constant flag curvature
    Xu, Ming
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (03) : 703 - 720
  • [9] Scalar curvature estimates of constant mean curvature hypersurfaces in locally symmetric spaces
    de Lima, Eudes L.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    Velasquez, Marco A. L.
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 320 - 341
  • [10] Scalar curvature estimates of constant mean curvature hypersurfaces in locally symmetric spaces
    Eudes L. de Lima
    Henrique F. de Lima
    Fábio R. dos Santos
    Marco A. L. Velásquez
    [J]. São Paulo Journal of Mathematical Sciences, 2019, 13 : 320 - 341