Index growth of hypersurfaces with constant mean curvature

被引:8
|
作者
Bérard, P
de Lima, LL
Rossman, W
机构
[1] Univ Grenoble 1, CNRS, UMR 5582, Inst Fourier, F-38402 St Martin Dheres, France
[2] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
[3] Kobe Univ, Fac Sci, Dept Math, Kobe, Hyogo 6578501, Japan
关键词
D O I
10.1007/s002090100284
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give the precise index growth for the embedded hypersurfaces of revolution with constant mean curvature (cmc) I in R-n (Delaunay unduloids). When n = 3, using the asymptotics result of Korevaar, Kusner and Solomon, we derive an explicit asymptotic index growth rate for finite topology cmc I surfaces with properly embedded ends. Similar results are obtained for hypersurfaces with cmc bigger than I in hyperbolic space.
引用
收藏
页码:99 / 115
页数:17
相关论文
共 50 条