Weakly stable constant mean curvature hypersurfaces

被引:1
|
作者
Fu Hai-ping [1 ,2 ]
Xu Hong-wei [1 ]
机构
[1] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Peoples R China
[2] Nanchang Univ, Dept Math, Nanchang 330047, Peoples R China
基金
中国国家自然科学基金;
关键词
constant mean curvature; weakly stable hypersurface; ends; MINIMAL HYPERSURFACES; FINITE INDEX; SUBMANIFOLDS; MANIFOLDS; SURFACES;
D O I
10.1007/s11766-009-1815-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M(n) be an n-dimensional complete noncompact oriented weakly stable constant mean curvature hypersurface in an (n + 1)-dimensional Riemannian manifold N(n+1) whose (n - 1)th Ricci curvature satisfying Ric((n-1))(N) >= (n - 1)c. Denote by H and phi the mean curvature and the trace-free second fundamental form of M respectively. If vertical bar phi vertical bar(2) - (n - 2)root n(n - 1)vertical bar H vertical bar vertical bar phi vertical bar + n(2n - 1)(H(2) + c) >= 0, then M does not admit nonconstant bounded harmonic functions with finite Dirichlet integral. In particular, if N has bounded geometry and c + H(2) > 0, then M must have only one end.
引用
收藏
页码:119 / 126
页数:8
相关论文
共 50 条