Stable constant mean curvature hypersurfaces in the real projective space

被引:2
|
作者
Alfas, Luis J.
Brasil, Aldir, Jr.
Perdomo, Oscar
机构
[1] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
[2] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
[3] Univ Valle, Dept Matemat, Cali, Colombia
关键词
Jacobi Operator; Constant Scalar Curvature; Minimal Hypersurface; Geodesic Sphere; Real Projective Space;
D O I
10.1007/s00229-006-0038-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove that the only compact two-sided hypersurfaces with constant mean curvature H which are weakly stable in RPn+1 and have constant scalar curvature are (i) the twofold covering of a totally geodesic projective space; (ii) the geodesic spheres in RPn+1; and (iii) the quotient to RPn+1 of the hypersurface S-k (r) x Sn-k (root 1-r(2)) hooked right arrow Sn+1 obtained as the product of two spheres of dimensions k and n-k, with k = 1,..., n-1, and radii r and root 1-r(2), respectively, with root k/(n+ 2) <= r <= root(k+2)/(n+2).
引用
收藏
页码:329 / 338
页数:10
相关论文
共 50 条
  • [1] Stable constant mean curvature hypersurfaces in the real projective space
    Luis J. Alías
    Aldir Brasil
    Oscar Perdomo
    [J]. manuscripta mathematica, 2006, 121 : 329 - 338
  • [2] Hypersurfaces with constant mean curvature in a real space form
    Shu, Shichang
    Liu, Sanyang
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (02) : 301 - 310
  • [3] Real hypersurfaces with constant φ-sectional curvature in complex projective space
    Cho, Jong Taek
    Kimura, Makoto
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 68
  • [4] ON STABLE CONSTANT MEAN CURVATURE HYPERSURFACES
    Fu, Hai-Ping
    Li, Zhen-Qi
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2010, 62 (03) : 383 - 392
  • [5] Stable constant mean curvature hypersurfaces
    Elbert, Maria Fernanda
    Nelli, Barbara
    Rosenberg, Harold
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (10) : 3359 - 3366
  • [6] Weakly stable constant mean curvature hypersurfaces
    Fu Hai-ping
    Xu Hong-wei
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2009, 24 (01): : 119 - 126
  • [7] Weakly stable constant mean curvature hypersurfaces
    FU Hai-ping1
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2009, (01) : 119 - 126
  • [8] Weakly stable constant mean curvature hypersurfaces
    Hai-ping Fu
    Hong-wei Xu
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2009, 24 : 119 - 126
  • [9] Hypersurfaces with Constant Mean Curvature in Space Forms
    Song Hongzao
    Hu Zejun
    Hu Conge(Henan University) (Zhengzhou University) (Henan University)
    [J]. Chinese Quarterly Journal of Mathematics, 1996, (01) : 42 - 48
  • [10] HYPERSURFACES OF MINKOWSKI SPACE WITH CONSTANT MEAN CURVATURE
    Li, Jintang
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (01): : 137 - 145