Optical Solitons and Other Solutions to the (2+1)-Dimensional Cubic Nonlinear Schrodinger Equation with Fractional Temporal Evolution

被引:3
|
作者
Atas, Sibel Sehriban [1 ]
Sulaiman, Tukur Abdulkadir [1 ,2 ]
Bulut, Hasan [1 ,3 ]
机构
[1] Firat Univ, Dept Math, Elazig, Turkey
[2] Fed Univ Dutse, Dept Math, Jigawa, Nigeria
[3] Final Univ, Dept Math Educ, Girne, Cyprus
关键词
COMPLEX;
D O I
10.1051/itmconf/20182201053
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, the (2+1)-dimensional cubic nonlinear Schrodinger equation with fractional temporal evolution is investigated by using the extended sinh-Gordon equation expansion method. The idea of conformable fractional derivative is used in transforming the complex nonlinear partial differential equation to nonlinear ordinary differential equation. Dark, bright, mixed dark-bright, singular, mixed singular solitons and singular periodic wave solutions are successfully reached. The parametric conditions for the existence of valid solitons are given. The 2D and 3D graphics to some of the reported solutions are plotted.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] An extended subequation rational expansion method and solutions of (2+1)-dimensional cubic nonlinear Schrodinger equation
    Guo Wei-Ming
    Li Biao
    Chen Yong
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 48 (06) : 987 - 992
  • [22] Diverse optical soliton solutions of the fractional coupled (2+1)-dimensional nonlinear Schrodinger equations
    Islam, Md Tarikul
    Akbar, Md Ali
    Ahmad, Hijaz
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (02)
  • [23] On the exact solution of (2+1)-dimensional cubic nonlinear Schrodinger (NLS) equation
    Saied, EA
    El-Rahman, RGA
    Ghonamy, MI
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (24): : 6751 - 6770
  • [24] Group-invariant solutions of the (2+1)-dimensional cubic Schrodinger equation
    Özemir, C
    Güngör, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (12): : 2973 - 2993
  • [25] Hybrid soliton solutions in the (2+1)-dimensional nonlinear Schrodinger equation
    Chen, Meidan
    Li, Biao
    [J]. MODERN PHYSICS LETTERS B, 2017, 31 (32):
  • [26] New Exact Solutions of the (2+1)-Dimensional Nonlinear Schrodinger Equation
    Abdel-Rahman, Reda G.
    [J]. CHINESE JOURNAL OF PHYSICS, 2008, 46 (05) : 495 - 510
  • [27] Optical solitons for the resonant nonlinear Schrodinger equation with competing weakly nonlocal nonlinearity and fractional temporal evolution
    Das, Amiya
    [J]. NONLINEAR DYNAMICS, 2017, 90 (03) : 2231 - 2237
  • [28] APPRAISAL OF ANALYTICAL SOLUTIONS FOR (2+1)-DIMENSIONAL NONLINEAR CHIRAL SCHRODINGER EQUATION
    Riaz, Muhammad Bilal
    Awrejcewicz, Jan
    Jhangeer, Adil
    Munawar, Maham
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (05)
  • [29] Rogue wave solutions of the (2+1)-dimensional derivative nonlinear Schrodinger equation
    Wen, Li-Li
    Zhang, Hai-Qiang
    [J]. NONLINEAR DYNAMICS, 2016, 86 (02) : 877 - 889
  • [30] Bifurcations and travelling wave solutions of a (2+1)-dimensional nonlinear Schrodinger equation
    Wang, Juan
    Chen, Longwei
    Liu, Changfu
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 : 76 - 80