New Exact Solutions of the (2+1)-Dimensional Nonlinear Schrodinger Equation

被引:0
|
作者
Abdel-Rahman, Reda G. [1 ]
机构
[1] Benha Univ, Fac Sci, Dept Math, Banha, Egypt
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The symmetry reduction method for the (2+1)-dimensional nonlinear Schrodinger equation is considered. Many exact solutions are presented. These solutions include exponential solutions, rational solutions, triangular periodic wave solutions, hyperbolic, and soliton solutions.
引用
收藏
页码:495 / 510
页数:16
相关论文
共 50 条
  • [1] Exact Solutions of the (2+1)-Dimensional Stochastic Chiral Nonlinear Schrodinger Equation
    Albosaily, Sahar
    Mohammed, Wael W.
    Aiyashi, Mohammed A.
    Abdelrahman, Mahmoud A. E.
    [J]. SYMMETRY-BASEL, 2020, 12 (11): : 1 - 12
  • [2] New exact traveling wave solutions to the (2+1)-dimensional Chiral nonlinear Schrodinger equation
    Rezazadeh, Hadi
    Younis, Muhammad
    Shafqat-Ur-Rehman
    Eslami, Moostafa
    Bilal, Muhammad
    Younas, Usman
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2021, 16
  • [3] Exact solutions and optical soliton solutions for the (2+1)-dimensional hyperbolic nonlinear Schrodinger equation
    Zayed, E. M. E.
    Al-Nowehy, Abdul-Ghani
    [J]. OPTIK, 2016, 127 (12): : 4970 - 4983
  • [4] A variety of exact solutions to (2+1)-dimensional schrodinger equation
    Younis, Muhammad
    Cheemaa, Nadia
    Mehmood, Syed Amer
    Rizvi, Syed Tahir Raza
    Bekir, Ahmet
    [J]. WAVES IN RANDOM AND COMPLEX MEDIA, 2020, 30 (03) : 490 - 499
  • [5] VARIETIES OF EXACT SOLUTIONS FOR THE (2+1)-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION WITH THE TRAPPING POTENTIAL
    Zhong, Wei-Ping
    Belic, Milivoj R.
    Mihalache, Dumitru
    Malomed, Boris A.
    Huang, Tingwen
    [J]. ROMANIAN REPORTS IN PHYSICS, 2012, 64 : 1399 - 1412
  • [6] Analysis of exact solutions and stability analysis of a (2+1)-dimensional nonlinear Schrodinger equation
    Zhang, Ling-Ling
    Wang, Xin
    [J]. OPTIK, 2022, 269
  • [7] Constructing families of exact solutions to a (2+1)-dimensional cubic nonlinear Schrodinger equation
    Li, B
    Zhang, HQ
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2004, 15 (05): : 741 - 751
  • [8] A new approach for solutions of the (2+1)-dimensional cubic nonlinear Schrodinger equation
    Zhi Hongyan
    Zhang Hongqing
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (01) : 120 - 129
  • [9] Stability of exact solutions of the (2+1)-dimensional nonlinear Schrodinger equation with arbitrary nonlinearity parameter κ
    Cooper, Fred
    Khare, Avinash
    Charalampidis, Efstathios G.
    Dawson, John F.
    Saxena, Avadh
    [J]. PHYSICA SCRIPTA, 2023, 98 (01)
  • [10] NEW EXACT SOLUTIONS OF COUPLED (2+1)-DIMENSIONAL NONLINEAR SYSTEMS OF SCHRODINGER EQUATIONS
    Khani, F.
    Darvishi, M. T.
    Farmany, A.
    Kavitha, L.
    [J]. ANZIAM JOURNAL, 2010, 52 (01): : 110 - 121