On the exact solution of (2+1)-dimensional cubic nonlinear Schrodinger (NLS) equation

被引:10
|
作者
Saied, EA [1 ]
El-Rahman, RGA [1 ]
Ghonamy, MI [1 ]
机构
[1] Benha Univ, Fac Sci, Dept Math, Banha, Egypt
来源
关键词
D O I
10.1088/0305-4470/36/24/312
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, symmetry reductions for a cubic nonlinear Schrodinger (NLS) equation to complex ordinary differential equations are presented. These are obtained by means of Lie's method of infinitesimal transformation groups. It is shown that ten types of-subgroups of the symmetry group lead, via symmetry reduction, to ordinary differential equations. These equations are solved and the similarity solutions are obtained.
引用
收藏
页码:6751 / 6770
页数:20
相关论文
共 50 条
  • [1] Constructing families of exact solutions to a (2+1)-dimensional cubic nonlinear Schrodinger equation
    Li, B
    Zhang, HQ
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2004, 15 (05): : 741 - 751
  • [2] New Exact Solutions of the (2+1)-Dimensional Nonlinear Schrodinger Equation
    Abdel-Rahman, Reda G.
    [J]. CHINESE JOURNAL OF PHYSICS, 2008, 46 (05) : 495 - 510
  • [3] A new approach for solutions of the (2+1)-dimensional cubic nonlinear Schrodinger equation
    Zhi Hongyan
    Zhang Hongqing
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (01) : 120 - 129
  • [4] Exact solution and exotic coherent soliton structures of the (2+1)-dimensional generalized nonlinear Schrodinger equation
    Zheng, CL
    Zhang, JF
    Sheng, ZM
    Huang, WH
    [J]. CHINESE PHYSICS, 2003, 12 (01): : 11 - 16
  • [5] Symmetries and dromion solution of a (2+1)-dimensional nonlinear Schrodinger equation
    Ruan, HY
    Chen, YX
    [J]. ACTA PHYSICA SINICA-OVERSEAS EDITION, 1999, 8 (04): : 241 - 251
  • [6] Exact Solutions of the (2+1)-Dimensional Stochastic Chiral Nonlinear Schrodinger Equation
    Albosaily, Sahar
    Mohammed, Wael W.
    Aiyashi, Mohammed A.
    Abdelrahman, Mahmoud A. E.
    [J]. SYMMETRY-BASEL, 2020, 12 (11): : 1 - 12
  • [7] A new general algebraic method with symbolic computation to construct new exact analytical solution for a (2+1)-dimensional cubic nonlinear Schrodinger equation
    Zheng, Ying
    Zhang, Yuanyuan
    Zhang, Hongqing
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 32 (03) : 1101 - 1107
  • [8] VARIETIES OF EXACT SOLUTIONS FOR THE (2+1)-DIMENSIONAL NONLINEAR SCHRODINGER EQUATION WITH THE TRAPPING POTENTIAL
    Zhong, Wei-Ping
    Belic, Milivoj R.
    Mihalache, Dumitru
    Malomed, Boris A.
    Huang, Tingwen
    [J]. ROMANIAN REPORTS IN PHYSICS, 2012, 64 : 1399 - 1412
  • [9] Analysis of exact solutions and stability analysis of a (2+1)-dimensional nonlinear Schrodinger equation
    Zhang, Ling-Ling
    Wang, Xin
    [J]. OPTIK, 2022, 269
  • [10] A Parametric Method Optimised for the Solution of the (2+1)-Dimensional Nonlinear Schrodinger Equation
    Anastassi, Zacharias A.
    Kosti, Athinoula A.
    Rufai, Mufutau Ajani
    [J]. MATHEMATICS, 2023, 11 (03)