On the exact solution of (2+1)-dimensional cubic nonlinear Schrodinger (NLS) equation

被引:10
|
作者
Saied, EA [1 ]
El-Rahman, RGA [1 ]
Ghonamy, MI [1 ]
机构
[1] Benha Univ, Fac Sci, Dept Math, Banha, Egypt
来源
关键词
D O I
10.1088/0305-4470/36/24/312
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, symmetry reductions for a cubic nonlinear Schrodinger (NLS) equation to complex ordinary differential equations are presented. These are obtained by means of Lie's method of infinitesimal transformation groups. It is shown that ten types of-subgroups of the symmetry group lead, via symmetry reduction, to ordinary differential equations. These equations are solved and the similarity solutions are obtained.
引用
收藏
页码:6751 / 6770
页数:20
相关论文
共 50 条
  • [21] Exact solutions and optical soliton solutions for the (2+1)-dimensional hyperbolic nonlinear Schrodinger equation
    Zayed, E. M. E.
    Al-Nowehy, Abdul-Ghani
    [J]. OPTIK, 2016, 127 (12): : 4970 - 4983
  • [22] Stability of exact solutions of the (2+1)-dimensional nonlinear Schrodinger equation with arbitrary nonlinearity parameter κ
    Cooper, Fred
    Khare, Avinash
    Charalampidis, Efstathios G.
    Dawson, John F.
    Saxena, Avadh
    [J]. PHYSICA SCRIPTA, 2023, 98 (01)
  • [23] Nonlinear tunneling effect in the (2+1)-dimensional cubic-quintic nonlinear Schrodinger equation with variable coefficients
    Dai, C. Q.
    Yang, Q.
    He, J. D.
    Wang, Y. Y.
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2011, 63 (01): : 141 - 148
  • [24] On the Whitham system for the (2+1)-dimensional nonlinear Schrodinger equation
    Ablowitz, Mark J.
    Cole, Justin T.
    Rumanov, Igor
    [J]. STUDIES IN APPLIED MATHEMATICS, 2023, 150 (02) : 380 - 419
  • [25] An extended subequation rational expansion method and solutions of (2+1)-dimensional cubic nonlinear Schrodinger equation
    Guo Wei-Ming
    Li Biao
    Chen Yong
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 48 (06) : 987 - 992
  • [26] Complete symmetry reductions, conservation laws and exact solutions for a (2+1)-dimensional nonlinear Schrodinger equation
    Zhi, Hongyan
    [J]. OPTIK, 2021, 232
  • [27] Finite Symmetry Transformation Groups and Some Exact Solutions to (2+1)-Dimensional Cubic Nonlinear Schrodinger Equantion
    Li Biao
    Li Yu-Qi
    Chen Yong
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 51 (05) : 773 - 776
  • [28] Exact solution of Dirac equation in 2+1 dimensional gravity
    Sucu, Yusuf
    Unal, Nuri
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (05)
  • [29] Exact solutions of the noncommutative and commutative nonlinear Schrodinger equation in 2+1 dimensions
    Sarfraz, H.
    Saleem, U.
    [J]. MODERN PHYSICS LETTERS A, 2017, 32 (29)
  • [30] Group-invariant solutions of the (2+1)-dimensional cubic Schrodinger equation
    Özemir, C
    Güngör, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (12): : 2973 - 2993