Exact solution and exotic coherent soliton structures of the (2+1)-dimensional generalized nonlinear Schrodinger equation

被引:0
|
作者
Zheng, CL [1 ]
Zhang, JF
Sheng, ZM
Huang, WH
机构
[1] Lishui Normal Coll, Dept Phys, Lishui 323000, Peoples R China
[2] Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China
[3] Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China
[4] Shanghai Univ, Shanghai Inst Math & Mech, Shanghai 200072, Peoples R China
来源
CHINESE PHYSICS | 2003年 / 12卷 / 01期
关键词
variable separation approach; generalized nonlinear Schrodinger equation; coherent structure;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a variable separation approach is used to obtain localized coherent structures of the (2 + 1)dimensional generalized nonlinear Schrodinger equation: iphi(t)-(alpha-beta)phi(xx) + (alpha + beta)phi(yy) - 2lambdaphi[(alpha + beta)(integral(-infinity)(x)\phi\(2)(y)dx + u(1)(y, t)) - (alpha - beta)(integral(-infinity)(y)\phi\(2)(x)dy + u(2)(x,t))] = 0. By applying a special Backlund transformation and introducing arbitrary functions of the seed solutions, the abundance of the localized structures of this model are derived. By selecting the arbitrary functions appropriately, some special types of localized excitations such as dromions, dromion lattice, breathers and instantons are constructed.
引用
收藏
页码:11 / 16
页数:6
相关论文
共 50 条
  • [1] Localized coherent soliton structures in a generalized (2+1)-dimensional nonlinear Schrodinger system
    Zheng, CL
    Sheng, ZM
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2003, 17 (22-24): : 4407 - 4414
  • [2] Localized coherent structures and integrability in a generalized (2+1)-dimensional nonlinear Schrodinger equation
    Radha, R
    Lakshmanan, M
    [J]. CHAOS SOLITONS & FRACTALS, 1997, 8 (01) : 17 - 25
  • [3] Exotic localized coherent structures of new (2+1)-dimensional soliton equation
    Zhang, JF
    Huang, WH
    Zheng, CL
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 38 (05) : 517 - 522
  • [4] Exact soliton of (2+1)-dimensional fractional Schrodinger equation
    Rizvi, S. T. R.
    Ali, K.
    Bashir, S.
    Younis, M.
    Ashraf, R.
    Ahmad, M. O.
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2017, 107 : 234 - 239
  • [5] On the exact solution of (2+1)-dimensional cubic nonlinear Schrodinger (NLS) equation
    Saied, EA
    El-Rahman, RGA
    Ghonamy, MI
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (24): : 6751 - 6770
  • [6] EXACT DARK SOLITON SOLUTION OF THE GENERALIZED NONLINEAR SCHRODINGER EQUATION
    Zhang, Yi
    Cai, Xiao-Na
    Yao, Cai-Zhen
    Xu, Hong-Xian
    [J]. MODERN PHYSICS LETTERS B, 2009, 23 (24): : 2869 - 2888
  • [7] Exact solutions and optical soliton solutions for the (2+1)-dimensional hyperbolic nonlinear Schrodinger equation
    Zayed, E. M. E.
    Al-Nowehy, Abdul-Ghani
    [J]. OPTIK, 2016, 127 (12): : 4970 - 4983
  • [8] On the coherent structures of (2+1)-dimensional breaking soliton equation
    Ruan, HY
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (02) : 453 - 457
  • [9] Hybrid soliton solutions in the (2+1)-dimensional nonlinear Schrodinger equation
    Chen, Meidan
    Li, Biao
    [J]. MODERN PHYSICS LETTERS B, 2017, 31 (32):
  • [10] Exact spatial similaritons for the generalized (2+1)-dimensional nonlinear Schrodinger equation with distributed coefficients
    Dai, Chao-Qing
    Zhu, Shi-Qun
    Wang, Liang-Liang
    Zhang, Jie-Fang
    [J]. EPL, 2010, 92 (02)