Bifurcations and travelling wave solutions of a (2+1)-dimensional nonlinear Schrodinger equation

被引:8
|
作者
Wang, Juan [1 ]
Chen, Longwei [1 ]
Liu, Changfu [2 ]
机构
[1] Yunnan Univ Finance & Econ, Coll Stat & Math, Kunming 650021, Yunnan, Peoples R China
[2] Wenshan Univ, Dept Math & Phys, Wenshan 663000, Peoples R China
基金
美国国家科学基金会;
关键词
Travelling wave solutions; Nonlinear Schrodinger equation; Dynamical systems; Theory of bifurcation; Phase portraits;
D O I
10.1016/j.amc.2014.10.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the travelling wave solutions of a nonlinear Schrodinger equation is considered by using the approach of dynamical systems and the theory of bifurcations. With the aid of Maple software, The possible explicit parametric representations of the bounded travelling wave solutions are got and all kinds of phase portraits in the parametric space are obtained. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:76 / 80
页数:5
相关论文
共 50 条
  • [1] A note on bifurcations and travelling wave solutions of a (2+1)-dimensional nonlinear Schrodinger equation
    Wang, Heng
    Zheng, Shuhua
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (01) : 251 - 261
  • [2] Bifurcations of travelling wave solutions for (2+1)-dimensional Boussinesq-type equation
    Feng, Dahe
    He, Tianlan
    Lu, Junliang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (01) : 402 - 414
  • [3] Rogue wave solutions of the (2+1)-dimensional derivative nonlinear Schrodinger equation
    Wen, Li-Li
    Zhang, Hai-Qiang
    [J]. NONLINEAR DYNAMICS, 2016, 86 (02) : 877 - 889
  • [4] WAVE SOLUTIONS OF A (2+1)-DIMENSIONAL GENERALIZATION OF THE NONLINEAR SCHRODINGER-EQUATION
    STRACHAN, IAB
    [J]. INVERSE PROBLEMS, 1992, 8 (05) : L21 - L27
  • [5] Utilizing two methods to discover novel travelling wave solutions for the (2+1)-dimensional Chiral nonlinear Schrodinger equation
    Gao, Yeqing
    Tala-Tebue, Eric
    Alain, Djimeli-Tsajio
    Hosseinzadeh, Mohammad Ali
    Rezazadeh, Hadi
    Salahshour, Soheil
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (07)
  • [6] Bifurcation of travelling wave solutions for a (2+1)-dimensional nonlinear dispersive long wave equation
    Zhou, Yuqian
    Liu, Qian
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (01) : 970 - 979
  • [7] Bifurcations of travelling wave solutions for the generalized (2+1)-dimensional Boussinesq-Kadomtsev-Petviashvili equation
    Xie, Yongan
    Zhou, Bowen
    Tang, Shengqiang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) : 2433 - 2447
  • [8] Novel Complex Wave Solutions of the (2+1)-Dimensional Hyperbolic Nonlinear Schrodinger Equation
    Durur, Hulya
    Ilhan, Esin
    Bulut, Hasan
    [J]. FRACTAL AND FRACTIONAL, 2020, 4 (03) : 1 - 8
  • [9] Bifurcation and travelling wave solutions for a (2+1)-dimensional KdV equation
    Elmandouha, A. A.
    Ibrahim, A. G.
    [J]. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 139 - 147
  • [10] New exact traveling wave solutions to the (2+1)-dimensional Chiral nonlinear Schrodinger equation
    Rezazadeh, Hadi
    Younis, Muhammad
    Shafqat-Ur-Rehman
    Eslami, Moostafa
    Bilal, Muhammad
    Younas, Usman
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2021, 16