Gigantic component in random distance graphs of special form

被引:3
|
作者
Yarmukhametov, A. R. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
关键词
random distance graph; gigantic component in a random graph; classical Erdos-Renyi theorems; k-vertex tree; Stirling's formula;
D O I
10.1134/S0001434612090167
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of threshold probability for the existence of a gigantic component in a certain series of random distance graphs. The results obtained generalize the classical ErdAs-R,nyi theorems in the case of geometric graphs of special form.
引用
收藏
页码:426 / 441
页数:16
相关论文
共 50 条
  • [41] Resistance distance distribution in large sparse random graphs
    Akara-pipattana, Pawat
    Chotibut, Thiparat
    Evnin, Oleg
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (03):
  • [42] The average distance and the diameter of dense random regular graphs
    Shimizu, Nobutaka
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 20
  • [43] About the distance between random walkers on some graphs
    Csaki, Endre
    Foldes, Antonia
    Revesz, Pal
    PERIODICA MATHEMATICA HUNGARICA, 2017, 75 (01) : 36 - 57
  • [44] Rates of convergence of random walk on distance regular graphs
    Belsley, ED
    PROBABILITY THEORY AND RELATED FIELDS, 1998, 112 (04) : 493 - 533
  • [45] Distance distribution in random graphs and application to network exploration
    Blondel, Vincent D.
    Guillaume, Jean-Loup
    Hendrickx, Julien M.
    Jungers, Raphael M.
    PHYSICAL REVIEW E, 2007, 76 (06)
  • [46] Rates of convergence of random walk on distance regular graphs
    Eric David Belsley
    Probability Theory and Related Fields, 1998, 112 : 493 - 533
  • [47] Further Results on Distance Estrada Index of Random Graphs
    Shang, Yilun
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (02) : 537 - 544
  • [48] Further Results on Distance Estrada Index of Random Graphs
    Yilun Shang
    Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41 : 537 - 544
  • [49] About the distance between random walkers on some graphs
    Endre Csáki
    Antónia Földes
    Pál Révész
    Periodica Mathematica Hungarica, 2017, 75 : 36 - 57
  • [50] Clique Numbers of Random Subgraphs of Some Distance Graphs
    Gusev, A. S.
    PROBLEMS OF INFORMATION TRANSMISSION, 2018, 54 (02) : 165 - 175