Gigantic component in random distance graphs of special form

被引:3
|
作者
Yarmukhametov, A. R. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
关键词
random distance graph; gigantic component in a random graph; classical Erdos-Renyi theorems; k-vertex tree; Stirling's formula;
D O I
10.1134/S0001434612090167
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of threshold probability for the existence of a gigantic component in a certain series of random distance graphs. The results obtained generalize the classical ErdAs-R,nyi theorems in the case of geometric graphs of special form.
引用
收藏
页码:426 / 441
页数:16
相关论文
共 50 条
  • [31] ON THE SECOND LARGEST COMPONENT OF RANDOM HYPERBOLIC GRAPHS
    Kiwi, Marcos
    Mitsche, Dieter
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (04) : 2200 - 2217
  • [32] The Largest Component in Subcritical Inhomogeneous Random Graphs
    Turova, Tatyana S.
    COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (01): : 131 - 154
  • [33] Component Evolution in General Random Intersection Graphs
    Bradonjic, Milan
    Hagberg, Aric
    Hengartner, Nicolas W.
    Percus, Allon G.
    ALGORITHMS AND MODELS FOR THE WEB GRAPH, 2010, 6516 : 36 - +
  • [34] COMPONENT EVOLUTION IN GENERAL RANDOM INTERSECTION GRAPHS
    Bloznelis, Mindaugas
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (02) : 639 - 654
  • [35] Embeddability of finite distance graphs with a large chromatic number in random graphs
    Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics, Moscow State University, Leninskie gory, Moscow 119992, Russia
    Dokl. Math., 2008, 1 (13-16):
  • [36] On the largest component of subcritical random hyperbolic graphs
    Diel, Roland
    Mitsche, Dieter
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2021, 26
  • [37] On embedding of finite distance graphs with large chromatic number in random graphs
    Nagaeva S.V.
    Raigorodskii A.M.
    Journal of Mathematical Sciences, 2009, 161 (5) : 648 - 667
  • [38] Embeddability of finite distance graphs with a large chromatic number in random graphs
    Nagaeva, S. V.
    DOKLADY MATHEMATICS, 2008, 77 (01) : 13 - 16
  • [39] ON THE RELATION BETWEEN GRAPH DISTANCE AND EUCLIDEAN DISTANCE IN RANDOM GEOMETRIC GRAPHS
    Diaz, J.
    Mitsche, D.
    Perarnau, G.
    Perez-Gimenez, X.
    ADVANCES IN APPLIED PROBABILITY, 2016, 48 (03) : 848 - 864
  • [40] The emergence of a giant component in random subgraphs of Pseudo-random graphs
    Frieze, A
    Krivelevich, M
    Martin, R
    RANDOM STRUCTURES & ALGORITHMS, 2004, 24 (01) : 42 - 50