Gigantic component in random distance graphs of special form

被引:3
|
作者
Yarmukhametov, A. R. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
关键词
random distance graph; gigantic component in a random graph; classical Erdos-Renyi theorems; k-vertex tree; Stirling's formula;
D O I
10.1134/S0001434612090167
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem of threshold probability for the existence of a gigantic component in a certain series of random distance graphs. The results obtained generalize the classical ErdAs-R,nyi theorems in the case of geometric graphs of special form.
引用
收藏
页码:426 / 441
页数:16
相关论文
共 50 条
  • [21] Independence numbers of random subgraphs of distance graphs
    M. M. Pyaderkin
    Mathematical Notes, 2016, 99 : 556 - 563
  • [22] Universality for the distance in finite variance random graphs
    van den Esker, Henri
    van der Hofstad, Remco
    Hooghiemstra, Gerard
    JOURNAL OF STATISTICAL PHYSICS, 2008, 133 (01) : 169 - 202
  • [23] Mixed connectivity properties of random graphs and some special graphs
    Ran Gu
    Yongtang Shi
    Neng Fan
    Journal of Combinatorial Optimization, 2021, 42 : 427 - 441
  • [24] On Ramsey numbers for special complete distance graphs
    A. M. Raigorodskii
    Mathematical Notes, 2007, 82 : 426 - 429
  • [25] DISTANCE TWO LABELING ON SPECIAL FAMILY OF GRAPHS
    Murugan, Muthali
    MATEMATICHE, 2015, 70 (02): : 35 - 48
  • [26] Mixed connectivity properties of random graphs and some special graphs
    Gu, Ran
    Shi, Yongtang
    Fan, Neng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 42 (03) : 427 - 441
  • [27] On Ramsey numbers for special complete distance graphs
    Raigorodskii, A. M.
    MATHEMATICAL NOTES, 2007, 82 (3-4) : 426 - 429
  • [28] ON THE CHROMATIC-NUMBERS OF SPECIAL DISTANCE GRAPHS
    VOIGT, M
    WALTHER, H
    DISCRETE MATHEMATICS, 1991, 97 (1-3) : 395 - 397
  • [29] Embeddability of finite distance graphs with a large chromatic number in random graphs
    S. V. Nagaeva
    Doklady Mathematics, 2008, 77 : 13 - 16
  • [30] THE LARGEST COMPONENT IN CRITICAL RANDOM INTERSECTION GRAPHS
    Wang, Bin
    Wang, Longmin
    Xiang, Kainan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (04) : 921 - 946