The average distance and the diameter of dense random regular graphs

被引:1
|
作者
Shimizu, Nobutaka [1 ]
机构
[1] Univ Tokyo, Dept Math Informat, Tokyo, Japan
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2020年 / 27卷 / 03期
关键词
UNIFORM GENERATION;
D O I
10.37236/8705
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let AD(G(n,d)) be the average distance of G(n,d), a random n-vertex d-regular graph. For d = (beta + o(1))n(alpha) with two arbitrary constants alpha is an element of (0,1) and beta > 0, we prove that vertical bar AD(G(n,d)) - j mu vertical bar < epsilon holds with high probability for any constant epsilon > 0, where mu is equal to alpha(-1) + exp(-beta(1/alpha)) if alpha(-1) is an element of N and to [alpha(-1)] otherwise. Consequently, we show that the diameter of the G(n,d) is equal to left perndicular alpha(-1) right perpendicular +1 with high probability.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条